Modeling of Blades as Equivalent Beams for Aeroelastic Analysis

Author(s):  
David J. Malcolm ◽  
Daniel L. Laird

A procedure has been developed and tested to derive a set of one-dimensional beam properties that will duplicate the behavior of a full three-dimensional finite element model of a wind turbine blade. This allows the full features of a detailed model to be transferred to an aeroelastic code for dynamic simulation of the complete wind turbine. The process uses the NuMAD interface to generate an ANSYS® finite element model to which a set of six unit loads are applied at the tip. The displacement results are used in a series of MATLAB routines to extract the stiffness matrices of the desired beam elements. Tests have been carried out on a number of blades and the stiffness matrices incorporated into ADAMS® models of the blades and complete wind turbines.

2019 ◽  
Vol 44 (6) ◽  
pp. 577-595
Author(s):  
Louis-Charles Forcier ◽  
Simon Joncas

This article first presents a description of the different load types to which a wind turbine blade is subjected. Analytical equations are derived to express blade loads from operation parameters of the wind turbine (rotor and nacelle velocities and accelerations; pitch, coning, tilt, and azimuth angles; blade mass properties; turbine geometry). This allows a better understanding of the contribution of each of these parameters to the total load on a blade. A difficulty arises for transferring the loads computed by an aeroelastic model (a one-dimensional model of the blade) to a three-dimensional finite element model of the blade. A method is proposed for that purpose. It consists in applying the aerodynamic loads using RBE3 elements and applying gravitational and inertial loads as volume forces. Finally, an example of this method used for the design of a 10 kW wind turbine blade is presented.


Author(s):  
O. E. C. Prizeman ◽  
V. Sarhosis ◽  
A. M. D’Alri ◽  
C. J. Whitman ◽  
G. Muratore

Caerphilly Castle (1268-70) is the first concentric castle in Britain and the second largest in the UK. The dramatic inclination of its ruinous south west tower has been noted since 1539. Comparing data from historical surveys and a terrestrial laser scan undertaken in 2015, this paper seeks to review evidence for the long-term stability of the tower. Digital documentation and archival research by architects is collated to provide data for structural analysis by engineers. A terrestrial laser scan was used to create a detailed three dimensional finite element model to enable structural analysis of the current shape of the tower made by tetrahedral elements. An automated strategy has been implemented for the transformation of the complex three dimensional point cloud into a three dimensional finite element model. Numerical analysis has been carried out aiming at understanding the main structural weaknesses of the tower in its present condition. Comparisons of four sets of data: 1539, 1830, 1870 and 2015 enabled us to determine change albeit between very different methods of measurement.


Sign in / Sign up

Export Citation Format

Share Document