long term stability
Recently Published Documents





2022 ◽  
Vol 423 ◽  
pp. 127193
Chaozhu Huang ◽  
Dongliang Liu ◽  
Dongting Wang ◽  
Haichuan Guo ◽  
Tiju Thomas ◽  

2022 ◽  
Vol 12 (1) ◽  
Luis Iglesias Hernandez ◽  
Priyadarshini Shanmugam ◽  
Jean-François Michaud ◽  
Daniel Alquier ◽  
Dominique Certon ◽  

AbstractChemically functionalized or coated sensors are by far the most employed solution in gas sensing. However, their poor long term stability represents a concern in applications dealing with hazardous gases. Uncoated sensors are durable but their selectivity is poor or non-existent. In this study, multi-parametric discrimination is used as an alternative to selectivity for uncoated capacitive micromachined ultrasonic transducers (CMUTs). This paper shows how measuring simultaneously the attenuation coefficient and the time of flight under different nitrogen mixtures allows to identify hydrogen, carbon dioxide and methane from each other and determine their concentration along with identification of temperature and humidity drifts. Theoretical comparison and specific signal processing to deal with the issue of multiple reflections are also presented. Some potential applications are monitoring of refueling stations, vehicles and nuclear waste storage facilities.

Riddhi Trivedi ◽  
Pravin Shende

Abstract: Nanotechnology opens many avenues in the food sector and offers applications associated with food production, processing, cultivation, and packaging. Nanofood employs nano-techniques like nano-encapsulation and conjugation of various phytochemicals, antioxidants, probiotics, minerals, vitamins, etc. into nanovehicles. Food fortification strategies are then implemented to incorporate nano-processed substances. Nanofood is mostly used for improving health and as a supplementation method in various diseases ranging from liver diseases to neurodegenerative disorders. Here, we focus on recent studies that exhibit comparable results for nanofood and conventional medicines and subsiding the limitations of traditional therapies. Nanofood hold a potential in management of various health problems and the possibilities of using nanofood as alternative to medicine in clinical conditions like cancers and inflammatory bowel disease. With further advances in nanotechnology and expansion in the scope of current nanofood industry in addition to proper regulations set in place, nanofood may offer a wide variety of advantages in safety, long-term stability, etc.

Chunli Wu ◽  
Xiaohao Dong ◽  
Lan Wang ◽  
Lei Zhang ◽  
Xiaotong Liu

Abstract In order to improve the visible light catalytic activity of titanium dioxide (TiO2) and ensure its long-term stability on the surface of concrete, an N-TiO2/SiO2 composite was prepared using tetrabutyl titanate, nitric acid, and modified SiO2 nanospheres as the precursors by a solvothermal method. The effect of nitric acid on the phase composition, morphology and photoelectric properties of the synthesized photocatalytic composites was systematically studied by various characterization methods. The results show that the optimum nitric acid/butyl titanate volume ratio is 1/6. The nitrogen-doped TiO2 nanoparticles were uniformly dispersed on the surface of spherical SiO2 with a diameter of 200 nm. The degradation rate of simulated pollutants (RhB) with pH 5 and 7 exceeded 95% within 30 minutes and the catalytic effect remained excellent after five repetitions without much weakening. The excellent visible photocatalytic performance can be attributed to the doping of N replacing part of the oxygen atoms in TiO2, forming the energy level of N 2p at the O 2p energy level and reducing the TiO2 energy band gap to 2.99 eV. At the same time, the better dispersion of N-TiO2/SiO2 prepared by this new synthesis method also plays an important role in the improvement of visible light photocatalytic activity.

Mikhail V Chester ◽  
Braden Allenby

Abstract Infrastructure systems must change to match the growing complexity of the environments they operate in. Yet the models of governance and the core technologies they rely on are structured around models of relative long-term stability that appear increasingly insufficient and even problematic. As the environments in which infrastructure function become more complex, infrastructure systems must adapt to develop a repertoire of responses sufficient to respond to the increasing variety of conditions and challenges. Whereas in the past infrastructure leadership and system design has emphasized organization strategies that primarily focus on exploitation (e.g., efficiency and production, amenable to conditions of stability), in the future they must create space for exploration, the innovation of what the organization is and does. They will need to create the abilities to maintain themselves in the face of growing complexity by creating the knowledge, processes, and technologies necessary to engage environment complexity. We refer to this capacity as infrastructure autopoiesis. In doing so infrastructure organizations should focus on four key tenets. First, a shift to sustained adaptation – perpetual change in the face of destabilizing conditions often marked by uncertainty – and away from rigid processes and technologies is necessary. Second, infrastructure organizations should pursue restructuring their bureaucracies to distribute more resources and decisionmaking capacity horizontally, across the organization’s hierarchy. Third, they should build capacity for horizon scanning, the process of systematically searching the environment for opportunities and threats. Fourth, they should emphasize loose fit design, the flexibility of assets to pivot function as the environment changes. The inability to engage with complexity can be expected to result in a decoupling between what our infrastructure systems can do and what we need them to do, and autopoietic capabilities may help close this gap by creating the conditions for a sufficient repertoire to emerge.

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 616
Stanisław Schillak ◽  
Paweł Lejba ◽  
Piotr Michałek ◽  
Tomasz Suchodolski ◽  
Adrian Smagło ◽  

This paper presents the results of an orbital analysis of satellite laser ranging data performed by the Borowiec SLR station (7811) in the period from July 1993 to December 2019, including the determination of the station positions and velocity. The analysis was performed using the GEODYN-II orbital program for the independent monthly orbital arcs from the results of the LAGEOS-1 and LAGEOS-2 satellites. Each arc was created from the results of the laser observations of a dozen or so selected stations, which were characterized by a large number of normal points and a good quality of observations. The geocentric and topocentric coordinates of the station were analyzed. Factors influencing the uncertainty of the measurements were determined: the number of the normal points, the dispersion of the normal points in relation to the orbits, and the long-term stability of the systematic deviations. The position leap at the end of 2002 and its interpretation in ITRF2014 were analyzed. The 3D stability of the determined positions throughout the period of study was equal to 12.7 mm, with the uncertainty of determination being at the level of 4.3 mm. A very high compliance of the computed velocity of the Borowiec SLR station (24.9 mm/year) with ITRF2014 (25.0 mm/year) was found.

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 556
Wei Duan ◽  
Fuwu Yan ◽  
Yu Wang ◽  
Hui Zhang ◽  
Liuhao Ma ◽  

A compact, sensitive laser-based absorption sensor for multispecies monitoring of methane (CH4), acetylene (C2H2) and ammonia (NH3) was developed using a compact multipass gas cell. The gas cell is 8.8 cm long and has an effective optical path length of 3.0 m with a sampling volume of 75 mL. The sensor is composed of three fiber-coupled distributed feedback lasers operating near 1512 nm, 1532 nm and 1654 nm, an InGaAs photodetector and a custom-designed software for data acquisition, signal processing and display. The lasers were scanned over the target absorption features at 1 Hz. First-harmonic-normalized wavelength modulation spectroscopy (f = 3 kHz) with the second harmonic detection (WMS-2f/1f) is employed to eliminate the unwanted power fluctuations of the transmitted laser caused by aerosol/particles scattering, absorption and beam-steering. The multispecies sensor has excellent linear responses (R2 > 0.997) within the gas concentration range of 1–1000 ppm and shows a detection limit of 0.32 ppm for CH4, 0.16 ppm for C2H2 and 0.23 ppm for NH3 at 1 s response time. The Allan–Werle deviation analysis verifies the long-term stability of the sensor, indicating a minimal detection limit of 20–34 ppb were achieved after 60–148 s integration time. Flow test of the portable multispecies sensor is also demonstrated in this work.

2022 ◽  
Michel Wehrhold ◽  
Tilmann J Neubert ◽  
Tobias Grosser ◽  
Kannan Balasubramanian

Electrochemical hydrogen evolution reaction (HER) at single graphene sheets has been investigated widely either in its pristine form or after chemical modification. One important challenge is the long-term stability of single graphene sheets on Si/SiO2 substrates under HER. Previous reports have found that due to stress developing under gas evolution, the sheets tend to break apart, with a very low lifetime limited to just a few cycles of HER. Here, we show through appropriate electrode preparation that it is possible to achieve highly durable single graphene electrodes on insulating substrates, which can survive several hundreds of HER cycles with virtually no damage to the sp2-carbon framework. Through systematic investigations including atomic force microscopy, Raman spectroscopy and electroanalysis, we show that even after so many cycles, the sheet is physically intact and the electron transfer capability of the electrodes remain unaffected. This extremely high stability of a single atomic sheet of carbon, when combined with appropriate chemical modification strategies, will pave way for the realization of novel 2D electrocatalysts.

2022 ◽  
Vol 16 (2) ◽  
pp. 81-93
A. V. Kolyako ◽  
A. S. Pleshkov ◽  
D. B. Tretyakov ◽  
V. M. Entin ◽  
I. I. Ryabtsev ◽  

Experimental results demonstrating long-term stability of the operation of our atmospheric quantum cryptography setup using the BB84 protocol and polarization coding are presented. It was shown that the “sifted” quantum key distribution rate and the quantum bit error rate in the key remained constant for 1 hour and were equal to 10 kbit/s and 6.5 %, respectively, at a distance between the transmitter and the receiver equal to 20 cm. Theoretical dependences of the secret quantum key generation rate on a quantum channel transmission coefficient for single-photon detectors, which were used in this experiment, and for new detectors with a reduced level of dark pulses are given.

Gut ◽  
2022 ◽  
pp. gutjnl-2021-326298
Menglei Shuai ◽  
Yuanqing Fu ◽  
Hai-li Zhong ◽  
Wanglong Gou ◽  
Zengliang Jiang ◽  

ObjectiveThe human gut fungal community, known as the mycobiome, plays a fundamental role in the gut ecosystem and health. Here we aimed to investigate the determinants and long-term stability of gut mycobiome among middle-aged and elderly adults. We further explored the interplay between gut fungi and bacteria on metabolic health.DesignThe present study included 1244 participants from the Guangzhou Nutrition and Health Study. We characterised the long-term stability and determinants of the human gut mycobiome, especially long-term habitual dietary consumption. The comprehensive multiomics analyses were performed to investigate the ecological links between gut bacteria, fungi and faecal metabolome. Finally, we examined whether the interaction between gut bacteria and fungi could modulate the metabolic risk.ResultsThe gut fungal composition was temporally stable and mainly determined by age, long-term habitual diet and host physiological states. Specifically, compared with middle-aged individuals, Blastobotrys and Agaricomycetes spp were depleted, while Malassezia was enriched in the elderly. Dairy consumption was positively associated with Saccharomyces but inversely associated with Candida. Notably, Saccharomycetales spp interacted with gut bacterial diversity to influence insulin resistance. Bidirectional mediation analyses indicated that bacterial function or faecal histidine might causally mediate an impact of Pichia on blood cholesterol.ConclusionWe depict the sociodemographic and dietary determinants of human gut mycobiome in middle-aged and elderly individuals, and further reveal that the gut mycobiome may be closely associated with the host metabolic health through regulating gut bacterial functions and metabolites.

Sign in / Sign up

Export Citation Format

Share Document