Wayfinder: Evaluating Multitouch Interaction in Supervisory Control of Unmanned Vehicles

Author(s):  
Jay Roltgen ◽  
Stephen Gilbert

In this paper we investigate whether the use of a multitouch interface allows users of a supervisory control system to perform tasks more effectively than possible with a mouse-based interface. Supervisory control interfaces are an active field of research, but so far have generally utilized mouse-based interaction. Additionally, most such interfaces require a skilled operator due to their intrinsic complexity. We present an interface for controlling multiple unmanned ground vehicles that is conducive to multitouch as well as mouse-based interaction, which allows us to evaluate novice users’ performance in several areas. Results suggest that a multitouch interface can be used as effectively as a mouse-based interface for certain tasks which are relevant in a supervisory control environment.

2001 ◽  
Author(s):  
Ron Carbonari ◽  
Mike Pilat ◽  
David C. Wilkins ◽  
Patricia A. Tatem ◽  
Frederick W. Williams

2014 ◽  
Vol 1049-1050 ◽  
pp. 1196-1199
Author(s):  
Yu Ming Ma ◽  
Lin Liu

In this paper, the substation computer supervisory control system structure, content, features and characteristics were described. In recent years, substation monitoring technology has been developed rapidly, and has been widely used. However, due to the promotion of our country is in its infancy, technology is not mature, the new operation and management model is being explored, and thus in the operation also exposed some problems.


2011 ◽  
Vol 346 ◽  
pp. 817-822 ◽  
Author(s):  
Xin Li ◽  
Guang Ming Xiong ◽  
Yang Sun ◽  
Shao Bin Wu ◽  
Jian Wei Gong ◽  
...  

The test system for technical abilities of unmanned vehicles is gradually developed from the single test to comprehensive test. The pre-established test and evaluation system can promote the development of unmanned ground vehicles. The 2009 Future Challenge: Intelligent Vehicles and Beyond (FC’09) pushed China's unmanned vehicles out of laboratories. This paper proposed to design a more scientific and comprehensive test system for future competitions to better guide and regulate the development of China's unmanned vehicles. According to the design idea of stage by stage and level by level, the hierarchical test content from simple to advanced, from local to overall is designed. Then the hierarchic test environment is established according to the levels of test content. The test method based on multi-platform and multi-sensor is put forward to ensure the accuracy of test results. The testing criterion framework is set up to regulate future unmanned vehicle contests and to assess the unmanned vehicles scientifically and accurately.


Sign in / Sign up

Export Citation Format

Share Document