scholarly journals Invasive Haemophilus influenzae Type f Disease Caused by a β-Lactamase-Negative Ampicillin-Resistant Strain in a 5-Year-Old Child

2021 ◽  
Vol 95 (2) ◽  
pp. 137-140
Author(s):  
Nagisa UJIDA ◽  
Kousaku MATSUBARA ◽  
Kenichi ISOME ◽  
Aya IWATA ◽  
Hiroshi TAKEGAWA ◽  
...  
1987 ◽  
Vol 14 (1) ◽  
pp. 61-65
Author(s):  
Z.A. Karrar ◽  
M.N. Chowdhury ◽  
B.A. Umar ◽  
S. Al Habib ◽  
H.R. Abu Hassan

2006 ◽  
Vol 75 (1) ◽  
pp. 325-333 ◽  
Author(s):  
Marisol A. Figueira ◽  
Sanjay Ram ◽  
Richard Goldstein ◽  
Derek W. Hood ◽  
E. Richard Moxon ◽  
...  

ABSTRACT Nontypeable (NT) Haemophilus influenzae is an important cause of otitis media in children. We have shown previously that NT H. influenzae mutants defective in their ability to sialylate lipopolysaccharide (LPS), called siaB mutants, show attenuated virulence in a chinchilla model of experimental otitis media (EOM). We show that complement is a key arm of host innate immunity against NT H. influenzae-induced EOM. Depleting complement in chinchillas by use of cobra venom factor (CoVF) rendered two otherwise avirulent siaB mutants fully virulent and able to cause EOM with severity similar to that of wild-type strains. Clearance of infection caused by siaB mutants in CoVF-treated animals coincided with reappearance of C3. Wild-type strains were more resistant to direct complement-mediated killing than their siaB mutants. The serum-resistant strain bound less C3 and C4 than the serum-sensitive strain. Neither NT H. influenzae strain tested bound factor H (alternative complement pathway regulator). Selective activation of the alternative pathway resulted in more C3 binding to siaB mutants. LPS sialylation had a more profound impact on the amount of alternative-pathway-mediated C3 binding (∼5-fold decrease in fluorescence) when LPS was the main C3 target, as occurred on the more serum-resistant strain. In contrast, only an ∼1.5-fold decrease in fluorescence intensity of C3 binding was seen with the serum-sensitive strain, where surface proteins predominantly bound C3. Differences in binding sites for C3 and C4 may account for variations in serum resistance between NT H. influenzae strains, which in turn may impact their virulence. These data demonstrate a central role for complement in innate immune defenses against NT H. influenzae infections and specifically EOM.


Author(s):  
D.J.P. Ferguson ◽  
M. Virji ◽  
H. Kayhty ◽  
E.R. Moxon

Haemophilus influenzae is a human pathogen which causes meningitis in children. Systemic H. influenzae infection is largely confined to encapsulated serotype b organisms and is a major cause of meningitis in the U.K. and elsewhere. However, the pathogenesis of the disease is still poorly understood. Studies in the infant rat model, in which intranasal challenge results in bacteraemia, have shown that H. influenzae enters submucosal tissues and disseminates to the blood stream within minutes. The rapidity of these events suggests that H. influenzae penetrates both respiratory epithelial and endothelial barriers with great efficiency. It is not known whether the bacteria penetrate via the intercellular junctions, are translocated within the cells or carried across the cellular barrier in 'trojan horse' fashion within phagocytes. In the present studies, we have challenged cultured human umbilical cord_vein endothelial cells (HUVECs) with both capsulated (b+) and capsule-deficient (b-) isogenic variants of one strain of H. influenzae in order to investigate the interaction between the bacteria and HUVEC and the effect of the capsule.


Sign in / Sign up

Export Citation Format

Share Document