Design approach of solid-core photonic crystal fiber sensor with sensing ring for blood component detection

2019 ◽  
Vol 13 (02) ◽  
pp. 1 ◽  
Author(s):  
Veerpal Kaur ◽  
Surinder Singh
2021 ◽  
Author(s):  
Monika Kiroriwal ◽  
Poonam Singal

Abstract In this article, a surface plasmon-based hexagonal photonic crystal fiber sensor is numerically computed and studied. Metallic layer thickness and lattice period are optimized to 30 nm and 1.75 µm respectively to enhance the sensor performance. Sensor sensitivity is obtained by employing the finite element method by enclosing the structure with a perfectly matched layer. This studied sensor uncovers the wavelength sensitivity of 8000nm/RIU, amplitude sensitivity of 3959 /RIU, and minimum detection ability of 1.25x10− 5 RIU for the analyte refractive index range from 1.36 to 1.40. The simulated results’ variations are also analyzed by altering the metallic layer thickness, lattice period, and air hole diameter. The computed PCF sensor might be a promising aspirant in the area of chemical sensing, bio-molecule detection, and biological sample recognition.


2022 ◽  
Author(s):  
Md. Ekhlasur Rahaman ◽  
Md. Bellal Hossain ◽  
Himadri Shekhar Mondal

2021 ◽  
Author(s):  
Bibhatsu Kuiri ◽  
Bubai Dutta ◽  
Nilanjana Sarkar ◽  
Saikat Santra ◽  
Paulomi Mandal ◽  
...  

Abstract A newer and efficient solid core with air holes and ring based circular photonic crystal fiber (C-PCF) design is proposed, developed, and studied. The C-PCF structure with a ring core and three layers of air holes is developed to communicate terahertz frequency of the range of 1 THz to 3 THz. Finite element method (FEM) is used to optimize the position, shape and dimensions of air holes and refractive index (RI) of material for the proposed PCF design and check the efficiency to support different orbital angular momentum (OAM) modes for communication. Our novel designed C-PCF supports multiple stable modes with mode purity above 0.9. Confinement loss is in the range of 10-12 dB/cm, highest effective mode area in the order of 1 mm2 is achieved in the investigated study for 3 THz transmission. The study observes that the performance of PCF is strongly dependent on RI of core and cladding.


Sign in / Sign up

Export Citation Format

Share Document