Lung segmentation based on a deep learning approach for dynamic chest radiography

Author(s):  
Yuki Kitahara ◽  
Rie Tanaka ◽  
Holger Roth ◽  
Hirohisa Oda ◽  
Kensaku Mori ◽  
...  
2021 ◽  
Author(s):  
Young-Gon Kim ◽  
Kyungsang Kim ◽  
Dufan Wu ◽  
Hui Ren ◽  
Won Young Tak ◽  
...  

Abstract Imaging plays an important role in assessing severity of COVID-19 pneumonia. The recent COVID-19 researches indicate that in many cases, disease progress propagates from the bottom of the lungs to the top. However, semantic interpretation of chest radiography (CXR) findings do not provide a quantitative description of radiographic opacities, and the existing AI-assisted CXR image analysis frameworks do not quantify the severity regionally. To address this issue, we propose a deep learning-based four-region lung segmentation method to assist accurate quantification of COVID-19 pneumonia. Specifically, a segmentation model to separate left and right lung is firstly applied, and then a carina and left hilum detection network is used to separate the upper and lower lungs. To improve the segmentation performance of COVID-19 images, ensemble strategy with five models is exploited. For each region, we evaluated the clinical relevance of the proposed method compared with the Radiographic Assessment of the Quality of Lung Edema (RALE). The proposed ensemble strategy showed dice score of 0.900, which outperforms the conventional methods. Mean intensities of segmented four regions indicate positive correlation to the extent and density scores of pulmonary opacities based on the RALE framework. Therefore, the proposed method can accurately segment four-regions of the lungs and quantify regional pulmonary opacities of COVID-19 pneumonia patients.


Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 101
Author(s):  
Young-Gon Kim ◽  
Kyungsang Kim ◽  
Dufan Wu ◽  
Hui Ren ◽  
Won Young Tak ◽  
...  

Imaging plays an important role in assessing the severity of COVID-19 pneumonia. Recent COVID-19 research indicates that the disease progress propagates from the bottom of the lungs to the top. However, chest radiography (CXR) cannot directly provide a quantitative metric of radiographic opacities, and existing AI-assisted CXR analysis methods do not quantify the regional severity. In this paper, to assist the regional analysis, we developed a fully automated framework using deep learning-based four-region segmentation and detection models to assist the quantification of COVID-19 pneumonia. Specifically, a segmentation model is first applied to separate left and right lungs, and then a detection network of the carina and left hilum is used to separate upper and lower lungs. To improve the segmentation performance, an ensemble strategy with five models is exploited. We evaluated the clinical relevance of the proposed method compared with the radiographic assessment of the quality of lung edema (RALE) annotated by physicians. Mean intensities of segmented four regions indicate a positive correlation to the regional extent and density scores of pulmonary opacities based on the RALE. Therefore, the proposed method can accurately assist the quantification of regional pulmonary opacities of COVID-19 pneumonia patients.


2018 ◽  
Vol 6 (3) ◽  
pp. 122-126
Author(s):  
Mohammed Ibrahim Khan ◽  
◽  
Akansha Singh ◽  
Anand Handa ◽  
◽  
...  

2020 ◽  
Vol 17 (3) ◽  
pp. 299-305 ◽  
Author(s):  
Riaz Ahmad ◽  
Saeeda Naz ◽  
Muhammad Afzal ◽  
Sheikh Rashid ◽  
Marcus Liwicki ◽  
...  

This paper presents a deep learning benchmark on a complex dataset known as KFUPM Handwritten Arabic TexT (KHATT). The KHATT data-set consists of complex patterns of handwritten Arabic text-lines. This paper contributes mainly in three aspects i.e., (1) pre-processing, (2) deep learning based approach, and (3) data-augmentation. The pre-processing step includes pruning of white extra spaces plus de-skewing the skewed text-lines. We deploy a deep learning approach based on Multi-Dimensional Long Short-Term Memory (MDLSTM) networks and Connectionist Temporal Classification (CTC). The MDLSTM has the advantage of scanning the Arabic text-lines in all directions (horizontal and vertical) to cover dots, diacritics, strokes and fine inflammation. The data-augmentation with a deep learning approach proves to achieve better and promising improvement in results by gaining 80.02% Character Recognition (CR) over 75.08% as baseline.


2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


Sign in / Sign up

Export Citation Format

Share Document