Open set SAR target classification

Author(s):  
Edmund G. Zelnio ◽  
Anne Pavy
Author(s):  
Ehud Hrushovski ◽  
François Loeser

This chapter examines the simplifications occurring in the proof of the main theorem in the smooth case. It begins by stating the theorem about the existence of an F-definable homotopy h : I × unit vector X → unit vector X and the properties for h. It then presents the proof, which depends on two lemmas. The first recaps the proof of Theorem 11.1.1, but on a Zariski dense open set V₀ only. The second uses smoothness to enable a stronger form of inflation, serving to move into V₀. The chapter also considers the birational character of the definable homotopy type in Remark 12.2.4 concerning a birational invariant.


2020 ◽  
Vol 9 (11) ◽  
pp. 9353-9360
Author(s):  
G. Selvi ◽  
I. Rajasekaran

This paper deals with the concepts of semi generalized closed sets in strong generalized topological spaces such as $sg^{\star \star}_\mu$-closed set, $sg^{\star \star}_\mu$-open set, $g^{\star \star}_\mu$-closed set, $g^{\star \star}_\mu$-open set and studied some of its basic properties included with $sg^{\star \star}_\mu$-continuous maps, $sg^{\star \star}_\mu$-irresolute maps and $T_\frac{1}{2}$-space in strong generalized topological spaces.


1998 ◽  
Author(s):  
K. Eom ◽  
M. Wellman ◽  
N. Srour ◽  
D. Hillis ◽  
R. Chellappa

2021 ◽  
Vol 22 (1) ◽  
pp. 53-68
Author(s):  
Guenter Knieps

5G attains the role of a GPT for an open set of downstream IoT applications in various network industries and within the app economy more generally. Traditionally, sector coupling has been a rather narrow concept focusing on the horizontal synergies of urban system integration in terms of transport, energy, and waste systems, or else the creation of new intermodal markets. The transition toward 5G has fundamentally changed the framing of sector coupling in network industries by underscoring the relevance of differentiating between horizontal and vertical sector coupling. Due to the fixed mobile convergence and the large open set of complementary use cases, 5G has taken on the characteristics of a generalized purpose technology (GPT) in its role as the enabler of a large variety of smart network applications. Due to this vertical relationship, characterized by pervasiveness and innovational complementarities between upstream 5G networks and downstream application sectors, vertical sector coupling between the provider of an upstream GPT and different downstream application industries has acquired particular relevance. In contrast to horizontal sector coupling among different application sectors, the driver of vertical sector coupling is that each of the heterogeneous application sectors requires a critical input from the upstream 5G network provider and combines this with its own downstream technology. Of particular relevance for vertical sector coupling are the innovational complementarities between upstream GPT and downstream application sectors. The focus on vertical sector coupling also has important policy implications. Although the evolution of 5G networks strongly depends on the entrepreneurial, market-driven activities of broadband network operators and application service providers, the future of 5G as a GPT is heavily contingent on the role of frequency management authorities and European regulatory policy with regard to data privacy and security regulations.


2020 ◽  
Vol 1656 ◽  
pp. 012004
Author(s):  
Zhuzheng Luan ◽  
Bing Gu ◽  
Jinfeng Wang ◽  
Chenglong Yu ◽  
Lei Xu

Sign in / Sign up

Export Citation Format

Share Document