Revised modal strain energy method for finite element analysis of viscoelastic damping treated structures

Author(s):  
Yanchu Xu ◽  
Yanning Liu ◽  
Bill S. Wang
Author(s):  
Hoi Wai Shih ◽  
David Thambiratnam ◽  
Tommy Chan

Assessing the structural health state of urban infrastructure is crucial in terms of infrastructure sustainability. This chapter uses dynamic computer simulation techniques to apply a procedure using vibration-based methods for damage assessment in multiple-girder composite bridges. In addition to changes in natural frequencies, this multi-criteria procedure incorporates two methods, namely, the modal flexibility and the modal strain energy method. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on modal flexibility and modal strain energy change, before and after damage, are obtained and used as the indices for the assessment of structural health state. The feasibility and capability of the approach is demonstrated through numerical studies of a proposed structure with six damage scenarios. It is concluded that the modal strain energy method is capable of application to multiple-girder composite bridges, as evidenced through the example treated in this chapter.


2010 ◽  
Vol 44-47 ◽  
pp. 2998-3002 ◽  
Author(s):  
Wei Ma ◽  
Yong Chao Lu ◽  
Yong Gang Liu ◽  
Ji Shun Li ◽  
Yu Jun Xue

Multi-plies bellows is a kind of cylindrical thin-walled container with curved shape. It is effective in seal, energy storage and vibration isolation. In the paper, the modal loss factor of multi-plies bellows was analyzed based on the modal strain energy method. Then the finite element models of multi-piles bellows were given by ANSYS. The mechanical performance of bellows was analyzed in detail. The strain energy distribution of multi-plies bellows and viscoelsticity layer were given. According to the strain energy, the influence of sandwich damping on the loss factor was studied. The results show that the loss factor can be improved by employing the sandwich damping with big thickness and elastic modulus 200MPa.


Sign in / Sign up

Export Citation Format

Share Document