Farrow structure implementation of fractional delay filter optimal in Chebyshev sense

Author(s):  
Marek Blok
2015 ◽  
Vol 39 (2) ◽  
pp. 231-242 ◽  
Author(s):  
Marek Blok ◽  
Piotr Drózda

Abstract In this paper a sample rate conversion algorithm which allows for continuously changing resampling ratio has been presented. The proposed implementation is based on a variable fractional delay filter which is implemented by means of a Farrow structure. Coefficients of this structure are computed on the basis of fractional delay filters which are designed using the offset window method. The proposed approach allows us to freely change the instantaneous resampling ratio during processing. Using such an algorithm we can simulate recording of audio on magnetic tape with nonuniform velocity as well as remove such distortions. We have demonstrated capabilities of the proposed approach based on the example of speech signal processing with a resampling ratio which was computed on the basis of estimated fundamental frequency of voiced speech segments.


Author(s):  
Ljiljana Milic

We have discussed so far the decimation and interpolation where the sampling rate conversion factor is an integer. However, the need for a non-integer sampling rate conversion appears when the two systems operating at different sampling rates have to be connected, or when there is a need to convert the sampling rate of the recorded data into another sampling rate for further processing or reproduction. Such applications are very common in telecommunications, digital audio, multimedia and others. In this chapter, we consider the sampling rate conversion by a rational factor, called sometimes a fractional sampling rate conversion. We use MATLAB functions from the Signal Processing and Filter Design Toolbox to demonstrate the fractional sampling rate conversion. We present the technique for constructing efficient fractional sampling rate converters based on FIR filters and the polyphase decomposition. In the sequel, we consider the sampling rate alteration with an arbitrary conversion factor. We present the polynomial-based approximation of the impulse response of a hybrid analog/digital model, and the implementation based on the Farrow structure. We also consider the fractional-delay filter problem. This chapter concludes with MATLAB exercises for individual study.


2019 ◽  
Vol 8 (4) ◽  
pp. 5932-5936

Beamforming plays an important role in the field of wireless communication. Beamforming means combination of a radio frequency (RF) signals from multiple antennas to form a single direction beam. This technique improves the quality of communication and reduces the interference of signal. In beam forming technique, different phases signals can be achieved with different signals and the received phase delay signals are converted into same phase, multiply with weight factor and combined this signals to form a beam in desired direction. The required phase delays are generated by using a Variable fractional delay filter. Variable fractional delay filter is design by using a direct form of a FIR filter structure. Variable fractional delay filter is calculated by two different phase signals from digital antennas and those two different phase signals are converted to in- phase and added together to form a beam forming. As the order of the filter increases, the delay also increases. The filter coefficients of the variable fractional delay filter are calculated my using a Lagrange interpolation method. The variable fractional delay filter is designed by using software Xilinx version 14.3


2002 ◽  
Vol 38 (19) ◽  
pp. 1083 ◽  
Author(s):  
G. Jovanovic-Dolecek ◽  
J. Diaz-Carmona

Sign in / Sign up

Export Citation Format

Share Document