A curiosity regarding steganographic capacity of pathologically nonstationary sources

Author(s):  
Andrew D. Ker
2001 ◽  
Vol 49 (9) ◽  
pp. 1837-1848 ◽  
Author(s):  
Dinh-Tuan Pham ◽  
J.-F. Cardoso

2004 ◽  
Vol 11 (7) ◽  
pp. 605-608 ◽  
Author(s):  
A. Belouchrani ◽  
K. Abed-Meraim ◽  
M.G. Amin ◽  
A.M. Zoubir

2020 ◽  
Author(s):  
Louise J. Slater ◽  
Bailey Anderson ◽  
Marcus Buechel ◽  
Simon Dadson ◽  
Shasha Han ◽  
...  

Abstract. Hydroclimatic extremes such as intense rainfall, floods, droughts, heatwaves, and wind/storms have devastating effects each year. One of the key challenges for society is understanding how these extremes are evolving and likely to unfold beyond their historical distributions under the influence of multiple drivers such as changes in climate, land cover, and other human factors. Methods for analysing hydroclimatic extremes have advanced considerably in recent decades. Here we provide a review of the drivers, metrics and methods for the detection, attribution, prediction and projection of nonstationary hydroclimatic extremes. We discuss issues and uncertainty associated with these approaches (e.g arising from insufficient record length, spurious nonstationarities, or incomplete representation of nonstationary sources in modelling frameworks), examine empirical and simulation-based frameworks for analysis of nonstationary extremes, and identify gaps for future research.


Sign in / Sign up

Export Citation Format

Share Document