scholarly journals LPA 2D-DOA Estimation for Fast Nonstationary Sources Using New Array Geometry Configuration

Author(s):  
Amira Ashour ◽  
Yasser Albagory
2020 ◽  
Vol 56 (8) ◽  
pp. 402-405
Author(s):  
Mengyi Liu ◽  
Hui Cao ◽  
Yuntao Wu

2014 ◽  
Vol 998-999 ◽  
pp. 779-783
Author(s):  
Zheng Luo ◽  
Fei Yu ◽  
Lin Wu ◽  
Yuan Liu

A novel two-dimensional (2D) direction-of-arrival (DOA) estimation algorithm utilizing a sparse signal representation of higher-order power of covariance matrix is proposed. Through applying the higher-order power of covariance matrix to construct a new sparse decomposition vector, this algorithm avoids the estimation of incident signal number and eigenvalue decomposition. And the hierarchical granularity-dictionary is studied, which forms the over-complete dictionary adaptively in the light of source signals’ distribution. Compared with MUSIC and L1-SVD, this algorithm not only provides a better 2D DOA performance but also possesses the capability of coherent signals estimation. Theoretical analysis and simulation results demonstrate the validity and robust of the proposed algorithm.


2021 ◽  
Vol 35 (11) ◽  
pp. 1435-1436
Author(s):  
Mehmet Hucumenoglu ◽  
Piya Pal

This paper considers the effect of sparse array geometry on the co-array signal subspace estimation error for Direction-of-Arrival (DOA) estimation. The second largest singular value of the signal covariance matrix plays an important role in controlling the distance between the true subspace and its estimate. For a special case of two closely-spaced sources impinging on the array, we explicitly compute the second largest singular value of the signal covariance matrix and show that it can be significantly larger for a nested array when compared against a uniform linear array with same number of sensors.


Sign in / Sign up

Export Citation Format

Share Document