SU-FF-T-345: Photon Dose Calculation Analysis of a Varian Treatment Planning System Algorithm On a Siemens Linear Accelerator in Inhomogeneous Media

2007 ◽  
Vol 34 (6Part13) ◽  
pp. 2481-2481
Author(s):  
J Finlay ◽  
C Mesina
2000 ◽  
Vol 27 (7) ◽  
pp. 1579-1587 ◽  
Author(s):  
Paolo Francescon ◽  
Carlo Cavedon ◽  
Sonia Reccanello ◽  
Stefania Cora

2021 ◽  
Vol 297 ◽  
pp. 01014
Author(s):  
Saad Zouiri ◽  
Meriem Tantaoui ◽  
Mounir El Hassani ◽  
Abdenbi El Moutaoukkil ◽  
Abdellatif Ennakri ◽  
...  

The objective of this study is to evaluate the dosimetric precision of the Monte Carlo (MC) algorithm to validate the Monaco® (Elekta) treatment planning system for the two radiotherapy techniques IMRT and VMAT® on the Infinity™ Elekta linear accelerator. Several irradiation plans were created on the Monaco® treatment planning system (TPS) and calculated by the integrated MC algorithm for its validation. The same plans were applied experimentally using the Matrixx Evolution 2D array with its appropriate phantom. All measurements were performed by superimposition with those calculated on the Infinity™ linear accelerator (ELEKTA). The calculated and measured dosimetric data were overlaid to make the comparison of what is realistic and what was simulated using the MyQA (IBA) software associated with the Matrixx. Good agreement was observed between calculated and measured data using 3%, 3mm distance to agreement (DTA) and low dose threshold 5% criteria. Global gamma analysis passing rates for all tests are greater than 95%. An agreement less than 2 mm is shown for open fields and homogenous dose test. However, there was increase in the agreement criteria above 3 mm for chair and pyramid test as a result of high gradient dose regions especially at the edge of target volumes. Results obtained from this study allowed, in one hand to confirm the accuracy of our MC model dose calculation with Monaco® TPS, and in the other hand, the use of the matrix detector as a standard tool for IMRT/VMAT® patient quality control.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Naonori Hu ◽  
Hiroki Tanaka ◽  
Ryo Kakino ◽  
Syuushi Yoshikawa ◽  
Mamoru Miyao ◽  
...  

AbstractBoron neutron capture therapy (BNCT) for the treatment of unresectable, locally advanced, and recurrent carcinoma of the head and neck cancer has been approved by the Japanese government for reimbursement under the national health insurance as of June 2020. A new treatment planning system for clinical BNCT has been developed by Sumitomo Heavy Industries, Ltd. (Sumitomo), NeuCure® Dose Engine. To safely implement this system for clinical use, the simulated neutron flux and gamma ray dose rate inside a water phantom was compared against experimental measurements. Furthermore, to validate and verify the new planning system, the dose distribution inside an anthropomorphic head phantom was compared against a BNCT treatment planning system SERA and an in-house developed Monte Carlo dose calculation program. The simulated results closely matched the experimental results, within 5% for the thermal neutron flux and 10% for the gamma ray dose rate. The dose distribution inside the head phantom closely matched with SERA and the in-house developed dose calculation program, within 3% for the tumour and a difference of 0.3 Gyw for the brain.


Sign in / Sign up

Export Citation Format

Share Document