scholarly journals Automated detection of microcalcification clusters for digital breast tomosynthesis using projection data only: A preliminary study

2008 ◽  
Vol 35 (4) ◽  
pp. 1486-1493 ◽  
Author(s):  
I. Reiser ◽  
R. M. Nishikawa ◽  
A. V. Edwards ◽  
D. B. Kopans ◽  
R. A. Schmidt ◽  
...  
2021 ◽  
Vol 11 (6) ◽  
pp. 2503
Author(s):  
Marco Alì ◽  
Natascha Claudia D’Amico ◽  
Matteo Interlenghi ◽  
Marina Maniglio ◽  
Deborah Fazzini ◽  
...  

Digital breast tomosynthesis (DBT) studies were introduced as a successful help for the detection of calcification, which can be a primary sign of cancer. Expert radiologists are able to detect suspicious calcifications in DBT, but a high number of calcifications with non-malignant diagnosis at biopsy have been reported (false positives, FP). In this study, a radiomic approach was developed and applied on DBT images with the aim to reduce the number of benign calcifications addressed to biopsy and to give the radiologists a helpful decision support system during their diagnostic activity. This allows personalizing patient management on the basis of personalized risk. For this purpose, 49 patients showing microcalcifications on DBT images were retrospectively included, classified by BI-RADS (Breast Imaging-Reporting and Data System) and analyzed. After segmentation of microcalcifications from DBT images, radiomic features were extracted. Features were then selected with respect to their stability within different segmentations and their repeatability in test–retest studies. Stable radiomic features were used to train, validate and test (nested 10-fold cross-validation) a preliminary machine learning radiomic classifier that, combined with BI-RADS classification, allowed a reduction in FP of a factor of 2 and an improvement in positive predictive value of 50%.


2010 ◽  
Author(s):  
Candy P. S. Ho ◽  
Chris E. Tromans ◽  
Julia A. Schnabel ◽  
Sir Michael Brady

2016 ◽  
Author(s):  
Andria Hadjipanteli ◽  
Premkumar Elangovan ◽  
Padraig T. Looney ◽  
Alistair Mackenzie ◽  
Kevin Wells ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Bingbing Xiao ◽  
Haotian Sun ◽  
You Meng ◽  
Yunsong Peng ◽  
Xiaodong Yang ◽  
...  

Abstract Background The classification of benign and malignant microcalcification clusters (MCs) is an important task for computer-aided diagnosis (CAD) of digital breast tomosynthesis (DBT) images. Influenced by imaging method, DBT has the characteristic of anisotropic resolution, in which the resolution of intra-slice and inter-slice is quite different. In addition, the sharpness of MCs in different slices of DBT is quite different, among which the clearest slice is called focus slice. These characteristics limit the performance of CAD algorithms based on standard 3D convolution neural network (CNN). Methods To make full use of the characteristics of the DBT, we proposed a new ensemble CNN, which consists of the 2D ResNet34 and the anisotropic 3D ResNet to extract the 2D focus slice features and 3D contextual features of MCs, respectively. Moreover, the anisotropic 3D convolution is used to build 3D ResNet to avoid the influence of DBT anisotropy. Results The proposed method was evaluated on 495 MCs in DBT images of 275 patients, which are collected from our collaborative hospital. The area under the curve (AUC) of receiver operating characteristic (ROC) and accuracy of classifying benign and malignant MCs using decision-level ensemble strategy were 0.8837 and 82.00%, which were significantly higher than the experimental results of 2D ResNet34 (AUC: 0.8264, ACC: 76.00%) and anisotropic 3D ResNet (AUC: 0.8455, ACC: 76.00%). Compared with the results of 3D features classification in the radiomics, the AUC of the deep learning method with decision-level ensemble strategy was improved by 0.0435, and the F1 score was improved from 79.37 to 85.71%. More importantly, the sensitivity increased from 78.13 to 84.38%, and the specificity increased from 66.67 to 77.78%, which effectively reduced the false positives of diagnosis Conclusion The results fully prove that the ensemble CNN can effectively integrate 2D features and 3D features, improve the classification performance of benign and malignant MCs in DBT, and reduce the false positives.


Sign in / Sign up

Export Citation Format

Share Document