scholarly journals Two‐tone suppression as a function of masker level, suppressor level, and signal delay

1980 ◽  
Vol 68 (S1) ◽  
pp. S82-S83
Author(s):  
D. L. Neff ◽  
W. Jesteadt
Keyword(s):  
1982 ◽  
Vol 71 (4) ◽  
pp. 950-962 ◽  
Author(s):  
Walt Jesteadt ◽  
Sid P. Bacon ◽  
James R. Lehman

2021 ◽  
Vol 25 ◽  
pp. 233121652110101
Author(s):  
Dmitry I. Nechaev ◽  
Olga N. Milekhina ◽  
Marina S. Tomozova ◽  
Alexander Y. Supin

The goal of the study was to investigate the role of combination products in the higher ripple-density resolution estimates obtained by discrimination between a spectrally rippled and a nonrippled noise signal than that obtained by discrimination between two rippled signals. To attain this goal, a noise band was used to mask the frequency band of expected low-frequency combination products. A three-alternative forced-choice procedure with adaptive ripple-density variation was used. The mean background (unmasked) ripple-density resolution was 9.8 ripples/oct for rippled reference signals and 21.8 ripples/oct for nonrippled reference signals. Low-frequency maskers reduced the ripple-density resolution. For masker levels from −10 to 10 dB re. signal, the ripple-density resolution for nonrippled reference signals was approximately twice as high as that for rippled reference signals. At a masker level as high as 20 dB re. signal, the ripple-density resolution decreased in both discrimination tasks. This result leads to the conclusion that low-frequency combination products are not responsible for the task-dependent difference in ripple-density resolution estimates.


2021 ◽  
Vol 7 (12) ◽  
pp. eabf4355
Author(s):  
Patrick G. Bissett ◽  
Henry M. Jones ◽  
Russell A. Poldrack ◽  
Gordon D. Logan

The stop-signal paradigm, a primary experimental paradigm for understanding cognitive control and response inhibition, rests upon the theoretical foundation of race models, which assume that a go process races independently against a stop process that occurs after a stop-signal delay (SSD). We show that severe violations of this independence assumption at short SSDs occur systematically across a wide range of conditions, including fast and slow reaction times, auditory and visual stop signals, manual and saccadic responses, and especially in selective stopping. We also reanalyze existing data and show that conclusions can change when short SSDs are excluded. Last, we suggest experimental and analysis techniques to address this violation, and propose adjustments to extant models to accommodate this finding.


Sign in / Sign up

Export Citation Format

Share Document