Effects of reducing speech audibility on signal‐to‐noise‐ratio loss for hearing‐impaired listeners.

2010 ◽  
Vol 128 (4) ◽  
pp. 2426-2426
Author(s):  
Peggy B. Nelson ◽  
Yingjiu Nie ◽  
Elizabeth Crump Anderson ◽  
Bhagyashree Katare
1980 ◽  
Vol 23 (3) ◽  
pp. 603-613 ◽  
Author(s):  
Robert H. Margolis ◽  
Seth M. Goldberg

Auditory frequency selectivity was inferred from measurements of the detectability of tonal signals as a function of the cutoff frequency of a low-pass computer-generated noise masker. In Experiment I the effect of small changes in signal-to-noise ratio on inferred auditory frequency selectivity was studied. In Experiment II, frequency selectivity was determined for five normal-hearing subjects and four subjects with sensorineural hearing loss due to presbycusis. Critical ratios (signal-to-noise ratio at masked threshold) also were determined in Experiment II. The results of Experiment I indicate that the low-pass masking experiment provides a stable estimate of the width, but not the position, of the critical masking band. Experiment II revealed elevated critical ratios for three of the four presbycusic subjects. Some hearing-impaired subjects appeared to have normal frequency selectivity despite elevated critical ratios. Other presbycusic subjects demonstrated impaired auditory frequency selectivity. The results suggest that critical ratio and critical masking band data are free to vary independently in hearing-impaired subjects.


2004 ◽  
Vol 116 (4) ◽  
pp. 2395-2405 ◽  
Author(s):  
Mead C. Killion ◽  
Patricia A. Niquette ◽  
Gail I. Gudmundsen ◽  
Lawrence J. Revit ◽  
Shilpi Banerjee

1992 ◽  
Vol 35 (4) ◽  
pp. 942-949 ◽  
Author(s):  
Christopher W. Turner ◽  
David A. Fabry ◽  
Stephanie Barrett ◽  
Amy R. Horwitz

This study examined the possibility that hearing-impaired listeners, in addition to displaying poorer-than-normal recognition of speech presented in background noise, require a larger signal-to-noise ratio for the detection of the speech sounds. Psychometric functions for the detection and recognition of stop consonants were obtained from both normal-hearing and hearing-impaired listeners. Expressing the speech levels in terms of their short-term spectra, the detection of consonants for both subject groups occurred at the same signal-to-noise ratio. In contrast, the hearing-impaired listeners displayed poorer recognition performance than the normal-hearing listeners. These results imply that the higher signal-to-noise ratios required for a given level of recognition by some subjects with hearing loss are not due in part to a deficit in detection of the signals in the masking noise, but rather are due exclusively to a deficit in recognition.


1993 ◽  
Vol 2 (2) ◽  
pp. 47-51 ◽  
Author(s):  
Edgar Villchur

Hearing aid design to alleviate the noise problem has concentrated on improving the signal-to-noise ratio with the aid, using devices such as directional microphones, adaptive filters, and circuits that discriminate between steady-state noise and speech. The design approach discussed here is directed at improving the speech recognition of hearing-impaired listeners at a given signal-to-noise ratio, by restoring to their perception speech cues they no longer hear because of their impairment. This allows them to retain more of the redundant information in speech after masking has taken its toll, and empowers their ability to separate desired from undesired signals (what Broadbent calls "selective listening" in persons with normal hearing). Experimental results are presented.


1986 ◽  
Vol 29 (2) ◽  
pp. 146-154 ◽  
Author(s):  
Reinier Plomp

This paper reviews the results of a series of investigations inspired by a model of the speech-reception threshold (SRT) of hearing-impaired listeners. The model contains two parameters accounting for the SRT of normal-hearing listeners (SRT in quiet and signal-to-noise ratio corresponding to the threshold at high noise levels), two parameters describing the hearing loss (attenuation and threshold elevation in terms of signal-to-noise ratio), and three parameters describing the hearing aid (acoustic gain, threshold elevation expressed in signal-to-noise ratio, and equivalent internal noise level). Experimental data are reported for three different types of hearing impairment: presbycusis, hearing losses with a pathological origin, and noise-induced losses. The model gives an excellent description of the data. It demonstrates that for many hearing-impaired persons speech intelligibility at noise levels beyond 50 to 60 dB(A) is their main problem, whereas hearing aids are most effective below that noise level.


Sign in / Sign up

Export Citation Format

Share Document