A first‐order k‐space model for elastic wave propagation in heterogeneous media.

2011 ◽  
Vol 129 (4) ◽  
pp. 2611-2611 ◽  
Author(s):  
Kamyar Firouzi ◽  
Benjamin Cox ◽  
Bradley Treeby ◽  
Nader Saffari
2012 ◽  
Vol 132 (3) ◽  
pp. 1271-1283 ◽  
Author(s):  
K. Firouzi ◽  
B. T. Cox ◽  
B. E. Treeby ◽  
N. Saffari

2003 ◽  
Vol 2003.78 (0) ◽  
pp. _5-51_-_5-52_
Author(s):  
Masatoshi YAMASHITA ◽  
Akihiro NAKATANI ◽  
Yoshikazu HIGA ◽  
Hiroshi KITAGAWA

Geophysics ◽  
1991 ◽  
Vol 56 (2) ◽  
pp. 168-181 ◽  
Author(s):  
J. S. Sochacki ◽  
J. H. George ◽  
R. E. Ewing ◽  
S. B. Smithson

The divergence theorem is used to handle the physics required at interfaces for acoustic and elastic wave propagation in heterogeneous media. The physics required at regular and irregular interfaces is incorporated into numerical schemes by integrating across the interface. The technique, which can be used with many numerical schemes, is applied to finite differences. A derivation of the acoustic wave equation, which is readily handled by this integration scheme, is outlined. Since this form of the equation is equivalent to the scalar SH wave equation, the scheme can be applied to this equation also. Each component of the elastic P‐SV equation is presented in divergence form to apply this integration scheme, naturally incorporating the continuity of the normal and tangential stresses required at regular and irregular interfaces.


1998 ◽  
Vol 152 (1-2) ◽  
pp. 85-102 ◽  
Author(s):  
Hesheng Bao ◽  
Jacobo Bielak ◽  
Omar Ghattas ◽  
Loukas F. Kallivokas ◽  
David R. O'Hallaron ◽  
...  

Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. T69-T86 ◽  
Author(s):  
Muming Xia ◽  
Hui Zhou ◽  
Hanming Chen ◽  
Qingchen Zhang ◽  
Qingqing Li

The lattice spring model (LSM) combined with the velocity Verlet algorithm is a newly developed scheme for modeling elastic wave propagation in solid media. Unlike conventional wave equations, LSM is established on the basis of micromechanics of the subsurface media, which enjoys better dynamic characteristics of elastic systems. We develop a rectangular-grid LSM scheme for elastic waves simulation in Poisson’s solids, and the direction-dependent elastic constants are deduced to keep the isotropy of the discrete grid. The stability condition and numerical dispersion properties of LSM are discussed and compared with other numerical methods. The 2D and 3D numerical simulations are carried out using the rectangular-grid LSM, as well as the second- and fourth-order accuracy staggered finite-difference method (FDM). Wavefields obtained by LSM are fairly similar with those by analytical solution and FDM, which demonstrates the correctness of the proposed scheme and its capability of modeling elastic wave propagation in heterogeneous media. Moreover, we perform plane P-wave simulation through a semi-infinite cavity model via LSM and FDM, the recorded wavefield snapshots indicate that our proposed rectangular-grid LSM obtains more reasonable wavefield details compared with those of FDM, especially in media with high compliance and structure complexity. Our main contribution lies in offering an alternative simulation scheme for modeling elastic wave propagation in media with some kinds of complexities, which conventional FDM may fail to simulate.


Sign in / Sign up

Export Citation Format

Share Document