Detection and F0 discrimination of harmonic complex tones in the presence of concurrent complexes

2004 ◽  
Vol 115 (5) ◽  
pp. 2389-2389
Author(s):  
Christophe Micheyl ◽  
Andrew Oxenham
Author(s):  
Joseph D Wagner ◽  
Alice Gelman ◽  
Kenneth E. Hancock ◽  
Yoojin Chung ◽  
Bertrand Delgutte

The pitch of harmonic complex tones (HCT) common in speech, music and animal vocalizations plays a key role in the perceptual organization of sound. Unraveling the neural mechanisms of pitch perception requires animal models but little is known about complex pitch perception by animals, and some species appear to use different pitch mechanisms than humans. Here, we tested rabbits' ability to discriminate the fundamental frequency (F0) of HCTs with missing fundamentals using a behavioral paradigm inspired by foraging behavior in which rabbits learned to harness a spatial gradient in F0 to find the location of a virtual target within a room for a food reward. Rabbits were initially trained to discriminate HCTs with F0s in the range 400-800 Hz and with harmonics covering a wide frequency range (800-16,000 Hz), and then tested with stimuli differing either in spectral composition to test the role of harmonic resolvability (Experiment 1), or in F0 range (Experiment 2), or both F0 and spectral content (Experiment 3). Together, these experiments show that rabbits can discriminate HCTs over a wide F0 range (200-1600 Hz) encompassing the range of conspecific vocalizations, and can use either the spectral pattern of harmonics resolved by the cochlea for higher F0s or temporal envelope cues resulting from interaction between unresolved harmonics for lower F0s. The qualitative similarity of these results to human performance supports using rabbits as an animal model for studies of pitch mechanisms providing species differences in cochlear frequency selectivity and F0 range of vocalizations are taken into account.


2000 ◽  
Vol 108 (1) ◽  
pp. 263-271 ◽  
Author(s):  
Nicolas Grimault ◽  
Christophe Micheyl ◽  
Robert P. Carlyon ◽  
Patrick Arthaud ◽  
Lionel Collet

1983 ◽  
Vol 73 (5) ◽  
pp. 1682-1685 ◽  
Author(s):  
Brian C. J. Moore ◽  
Brian R. Glasberg

2012 ◽  
Vol 292 (1-2) ◽  
pp. 26-34 ◽  
Author(s):  
Christopher J. Smalt ◽  
Ananthanarayan Krishnan ◽  
Gavin M. Bidelman ◽  
Saradha Ananthakrishnan ◽  
Jackson T. Gandour

2001 ◽  
Vol 86 (6) ◽  
pp. 2761-2788 ◽  
Author(s):  
Yonatan I. Fishman ◽  
Igor O. Volkov ◽  
M. Daniel Noh ◽  
P. Charles Garell ◽  
Hans Bakken ◽  
...  

Some musical chords sound pleasant, or consonant, while others sound unpleasant, or dissonant. Helmholtz's psychoacoustic theory of consonance and dissonance attributes the perception of dissonance to the sensation of “beats” and “roughness” caused by interactions in the auditory periphery between adjacent partials of complex tones comprising a musical chord. Conversely, consonance is characterized by the relative absence of beats and roughness. Physiological studies in monkeys suggest that roughness may be represented in primary auditory cortex (A1) by oscillatory neuronal ensemble responses phase-locked to the amplitude-modulated temporal envelope of complex sounds. However, it remains unknown whether phase-locked responses also underlie the representation of dissonance in auditory cortex. In the present study, responses evoked by musical chords with varying degrees of consonance and dissonance were recorded in A1 of awake macaques and evaluated using auditory-evoked potential (AEP), multiunit activity (MUA), and current-source density (CSD) techniques. In parallel studies, intracranial AEPs evoked by the same musical chords were recorded directly from the auditory cortex of two human subjects undergoing surgical evaluation for medically intractable epilepsy. Chords were composed of two simultaneous harmonic complex tones. The magnitude of oscillatory phase-locked activity in A1 of the monkey correlates with the perceived dissonance of the musical chords. Responses evoked by dissonant chords, such as minor and major seconds, display oscillations phase-locked to the predicted difference frequencies, whereas responses evoked by consonant chords, such as octaves and perfect fifths, display little or no phase-locked activity. AEPs recorded in Heschl's gyrus display strikingly similar oscillatory patterns to those observed in monkey A1, with dissonant chords eliciting greater phase-locked activity than consonant chords. In contrast to recordings in Heschl's gyrus, AEPs recorded in the planum temporale do not display significant phase-locked activity, suggesting functional differentiation of auditory cortical regions in humans. These findings support the relevance of synchronous phase-locked neural ensemble activity in A1 for the physiological representation of sensory dissonance in humans and highlight the merits of complementary monkey/human studies in the investigation of neural substrates underlying auditory perception.


2008 ◽  
Vol 123 (5) ◽  
pp. 3685-3685
Author(s):  
Sebastian Fingerhuth ◽  
Etienne Parizet

Sign in / Sign up

Export Citation Format

Share Document