wide frequency range
Recently Published Documents


TOTAL DOCUMENTS

928
(FIVE YEARS 293)

H-INDEX

35
(FIVE YEARS 6)

2022 ◽  
Vol 24 (4) ◽  
pp. 25-45
Author(s):  
Vladimir F. Dmitrikov ◽  
Dmitry V. Shushpanov

Based on the measured impedance of the inductors wound on various ferrite cores and with a different number of turns, an equivalent high frequency (0 Hz 500 MHz) circuit model was built. The equivalent circuit model was built taking into account the physical processes occurring in the inductor: effect of wire resistance, effect of core material, mutual effect of wire and core material. The attempt explaining why the frequency characteristics (modulus and phase) of the inductor complex impedance have such a character in a wide frequency band (up to 500 MHz) was made. It was shown that for constructing an equivalent circuit model (structure and parameters), measuring only the inductors resistance modulus is not enough. It is also necessary to measure the phase of the inductor complex resistance, which is ignored in many works on the synthesis of an e inductor equivalent circuit.


2022 ◽  
Vol 12 (3) ◽  
pp. 101-110
Author(s):  
MN Hossain ◽  
MA Matin ◽  
MM Rhaman ◽  
MA Ali ◽  
MA Hakim ◽  
...  

This study reports the structural modifications in undoped multiferroic BiFeO3 (bismuth ferrite or BFO) nanoparticles caused by doping at both the A-site (by 5% Gd) and B-site (by 2-8% Cr) and the resulting improvements in dielectric characteristics. Both un-doped and doped BFO nanoparticles were synthesized using the sol-gel technique and annealed at 600°C for crystallization. X-ray diffractometry (XRD) reveals a phase transition from rhombic (R3c) to orthorhombic (Pn21a). Field Emission Scanning Electron Microscopy (FESEM) study shows the production of nanoparticles with sizes ranging from 80 to 130 nm. Impedance analyzer experiments (100 Hz-10 MHz) show that the dielectric characteristics of doubly doped BFO are very stable over a wide frequency range. The dielectric permittivity of co-doped BFO decreases with Cr doping concentration up to x = 0.06 before reversing. The conductivity drops dramatically as the Cr content rises. Journal of Engineering Science 12(3), 2021, 101-110


Author(s):  
Natalia A. Wójcik ◽  
Nagia S. Tagiara ◽  
Doris Möncke ◽  
Efstratios I. Kamitsos ◽  
Sharafat Ali ◽  
...  

AbstractElectrical properties of beryllium-alumino-tellurite glasses and glass–ceramics doped with iron ions were studied using impedance spectroscopy. The conductivity was measured over a wide frequency range from 10 mHz to 1 MHz and the temperature range from 213 to 473 K. The D.C. conductivity values showed a correlation with the Fe-ion concentration and ratio of iron ions on different valence states in the samples. On the basis of Jonscher universal dielectric response the temperature dependence of conductivity parameters were determined and compared to theoretical models collected by Elliott. In glasses, the conduction process was found to be due to the overlap polaron tunneling while in glass–ceramics the quantum mechanical tunneling between semiconducting crystallites of iron oxides is proposed. The D.C. conductivity was found not to follow Arrhenius relation. The Schnakenberg model was used to analyze the conductivity behavior and the polaron hopping energy and disorder energy were estimated. Additionally, the correlation between alumina dissolution and basicity of the melts was observed.


Author(s):  
Hao Qiu ◽  
Faxin Li

Abstract Experimental modal analysis (EMA) is of great importance for the dynamic characterization of structures. Existing methods typically employ out-of-plane forces for excitation and measure the acceleration or strain for modal analysis. However, these methods encountered difficulties in some cases. In this work, we proposed an in-plane excitation method based on thickness-shear (d15) piezoelectric transducers. Through the combination of distributed d15 PZT strips, arbitrary vibration modes can be selectively excited in a wide frequency range. Both simulations and experiments were conducted and the results validated the proposed method. Specifically, bending, torsional, and longitudinal vibration modes of a rectangular bar were selectively excited. Torsional modes of a shaft were excited without the aid of brackets and bending modes of a circular plate were excited with actuators placed at nodal lines. Furthermore, the electromechanical impedance of the PZT-structure system was measured from which the natural frequency and quality factor were directly extracted. Due to its simplicity and flexibility, the proposed vibration excitation method is expected to be widely used in near future.


Author(s):  
Yiwen He ◽  
Yu-Po Wong ◽  
Qi Liang ◽  
Ting Wu ◽  
Jing-Fu Bao ◽  
...  

Abstract This paper discusses the applicability of double busbar design to surface acoustic wave (SAW) devices employing low-cut lithium tantalate (LT) with multi-layered structure. This design offers good energy confinement, scattering loss suppression and transverse mode suppression for a wide frequency range. In addition, the effectiveness of manipulating the slowness curve shape for transverse mode suppression is demonstrated. First, three different lateral edge designs are applied to the layered SAW configuration on low-cut LT, and their performances are compared using the periodic 3-dimensional finite-element method powered by the hierarchical cascading technique. Then, the discussion is extended to influence of the SAW slowness shape to the transverse mode suppression.


Author(s):  
Igor S. Poperechny

A kinetic theory of magnetic response of uniaxial antiferromagnetic nanoparticles is presented. Within the developed framework, a particular case when an external field is applied strictly along the anisotropy axis is considered in detail. Analysis of the relaxation spectrum of an antiferromagnetic particle with a spontaneous magnetic moment is performed. It is shown that in a wide frequency range the magnetic response of such particle is determined entirely by the relaxation mode with the longest time. An analytical expression for this time that explicitly contains a value of the decompensation magnetic moment is derived. Also, simple formulae for both static and dynamic longitudinal magnetic susceptibility of an antiferromagnetic nanoparticle are obtained. According to them, longitudinal susceptibility grows quadratically with the value of the spontaneous magnetic moment. Besides, if the latter is not zero, the change of the static susceptibility with temperature turns out to be non-monotonic. The influence of the spontaneous magnetic moment of the particle on the magnetization curves in strong fields is analysed using both energy approach and kinetic theory. The calculated dependences of the dynamic coercivity on the amplitude and variation rate of the applied field are qualitatively compared with experimental data. This article is part of the theme issue ‘Transport phenomena in complex systems (part 2)’.


2022 ◽  
Vol 43 (1) ◽  
pp. 014102
Author(s):  
Zhaomeng Gao ◽  
Shuxian Lyu ◽  
Hangbing Lyu

Abstract Ferroelectric hysteresis loop measurement under high driving frequency generally faces great challenges. Parasitic factors in testing circuits such as leakage current and RC delay could result in abnormal hysteresis loops with erroneous remnant polarization (P r) and coercive field (E c). In this study, positive-up-negative-down (PUND) measurement under a wide frequency range was performed on a 10-nm thick Hf0.5Zr0.5O2 ferroelectric film. Detailed analysis on the leakage current and RC delay was conducted as the polarization switching occurs in the FE capacitor. After considering the time lag caused by RC delay, reasonable calibration of current response over the voltage pulse stimulus was employed in the integral of polarization current over time. In such a method, rational P–V loops measured at high frequencies (>1 MHz) was successfully achieved. This work provides a comprehensive understanding on the effect of parasitic factors on the polarization switching behavior of FE films.


2022 ◽  
Vol 924 (2) ◽  
pp. 58
Author(s):  
K. Sasikumar Raja ◽  
Milan Maksimovic ◽  
Eduard P. Kontar ◽  
Xavier Bonnin ◽  
Philippe Zarka ◽  
...  

Abstract We present the statistical analysis of the spectral response of solar radio type III bursts over the wide frequency range between 20 kHz and 410 MHz. For this purpose, we have used observations that were carried out using both spaced-based (Wind/Waves) and ground-based (Nançay Decameter Array and Nançay Radioheliograph) facilities. In order to compare the flux densities observed by the different instruments, we have carefully calibrated the data and displayed them in solar flux units. The main result of our study is that type III bursts, in the metric to hectometric wavelength range, statistically exhibit a clear maximum of their median radio flux density around 2 MHz. Although this result was already reported by inspecting the spectral profiles of type III bursts in the frequency range 20 kHz–20 MHz, our study extends such analysis for the first time to metric radio frequencies (i.e., from 20 kHz to 410 MHz) and confirms the maximum spectral response around 2 MHz. In addition, using a simple empirical model we show that the median radio flux S of the studied data set obeys the polynomial form Y = 0.04X 3 − 1.63X 2 + 16.30X − 41.24, with X = ln ( F MHz ) and with Y = ln ( S SFU ) . Using the Sittler and Guhathakurtha model for coronal streamers, we have found that the maximum of radio power therefore falls in the range 4 to 10 R ⊙, depending on whether the type III emissions are assumed to be at the fundamental or the harmonic.


Sign in / Sign up

Export Citation Format

Share Document