Influence of peripheral resolvability on the perceptual segregation of harmonic complex tones differing in fundamental frequency

2000 ◽  
Vol 108 (1) ◽  
pp. 263-271 ◽  
Author(s):  
Nicolas Grimault ◽  
Christophe Micheyl ◽  
Robert P. Carlyon ◽  
Patrick Arthaud ◽  
Lionel Collet
Author(s):  
Joseph D Wagner ◽  
Alice Gelman ◽  
Kenneth E. Hancock ◽  
Yoojin Chung ◽  
Bertrand Delgutte

The pitch of harmonic complex tones (HCT) common in speech, music and animal vocalizations plays a key role in the perceptual organization of sound. Unraveling the neural mechanisms of pitch perception requires animal models but little is known about complex pitch perception by animals, and some species appear to use different pitch mechanisms than humans. Here, we tested rabbits' ability to discriminate the fundamental frequency (F0) of HCTs with missing fundamentals using a behavioral paradigm inspired by foraging behavior in which rabbits learned to harness a spatial gradient in F0 to find the location of a virtual target within a room for a food reward. Rabbits were initially trained to discriminate HCTs with F0s in the range 400-800 Hz and with harmonics covering a wide frequency range (800-16,000 Hz), and then tested with stimuli differing either in spectral composition to test the role of harmonic resolvability (Experiment 1), or in F0 range (Experiment 2), or both F0 and spectral content (Experiment 3). Together, these experiments show that rabbits can discriminate HCTs over a wide F0 range (200-1600 Hz) encompassing the range of conspecific vocalizations, and can use either the spectral pattern of harmonics resolved by the cochlea for higher F0s or temporal envelope cues resulting from interaction between unresolved harmonics for lower F0s. The qualitative similarity of these results to human performance supports using rabbits as an animal model for studies of pitch mechanisms providing species differences in cochlear frequency selectivity and F0 range of vocalizations are taken into account.


2017 ◽  
Vol 35 (2) ◽  
pp. 127-143
Author(s):  
Václav Vencovský ◽  
František Rund

This study is focused on the perceived roughness of two simultaneous harmonic complex tones with ratios between their fundamental frequencies set to create intervals on just-tempered (JT) and equal-tempered (ET) scales. According to roughness theories, ET intervals should produce more roughness. However, previous studies have shown the opposite for intervals in which the lower fundamental frequency of the complex was equal to 261.6 Hz. The aim of this study is to verify and explain these results by using intervals composed of complexes whose spectral components were generated with either a sine starting phase or with a random starting phase. Results of the current study showed the same phenomenon as previous studies. To examine whether the explanation of the phenomenon lies in the function of the peripheral ear, three roughness models based upon this function were used: the Daniel and Weber (1997) model, the synchronization index (SI) model, and the model based on a hydrodynamic cochlear model. For most of the corresponding JT and ET intervals, only the Daniel and Weber (1997) model predicted less roughness in the ET intervals. In addition to this, the intervals were analyzed by a model simulating the auditory periphery. The results showed that a possible cause for the roughness differences may be in the frequencies of fluctuations of the signal in the peripheral ear. For JT intervals the fluctuations in the adjacent places on the simulated basilar membrane had either the same frequency or integer multiples of that frequency and were synchronized. Since a previous study showed that synchronized fluctuations in adjacent auditory filters lead to higher roughness than out of phase fluctuations (Terhardt, 1974), this may cause more roughness across JT and ET intervals.


Author(s):  
KATRIN KRUMBHOLZ ◽  
ROY D. PATTERSON ◽  
DANIEL PRESSNITZER

2006 ◽  
Vol 120 (2) ◽  
pp. 957-965 ◽  
Author(s):  
Hedwig Gockel ◽  
Brian C. J. Moore ◽  
Christopher J. Plack ◽  
Robert P. Carlyon

1983 ◽  
Vol 73 (5) ◽  
pp. 1682-1685 ◽  
Author(s):  
Brian C. J. Moore ◽  
Brian R. Glasberg

1996 ◽  
Vol 34 (2) ◽  
pp. 153-157 ◽  
Author(s):  
Claude Paquette ◽  
Michelle Bourassa ◽  
Isabelle Peretz

2012 ◽  
Vol 292 (1-2) ◽  
pp. 26-34 ◽  
Author(s):  
Christopher J. Smalt ◽  
Ananthanarayan Krishnan ◽  
Gavin M. Bidelman ◽  
Saradha Ananthakrishnan ◽  
Jackson T. Gandour

Sign in / Sign up

Export Citation Format

Share Document