Enantioselective Pharmacokinetics of Primaquine in Healthy Human Volunteers

2015 ◽  
Vol 43 (4) ◽  
pp. 571-577 ◽  
Author(s):  
Babu L. Tekwani ◽  
Bharathi Avula ◽  
Rajnish Sahu ◽  
Narayan D. Chaurasiya ◽  
Shabana I. Khan ◽  
...  
2020 ◽  
Vol 14 (1) ◽  
pp. 5
Author(s):  
Joanna Czerwinska ◽  
Mark C. Parkin ◽  
Agostino Cilibrizzi ◽  
Claire George ◽  
Andrew T. Kicman ◽  
...  

Mephedrone, which is one of the most popular synthetic cathinones, has one chiral centre and thus exists as two enantiomers: R-(+)-mephedrone and S-(−)-mephedrone. There are some preliminary data suggesting that the enantiomers of mephedrone may display enantioselective pharmacokinetics and exhibit different neurological effects. In this study, enantiomers of mephedrone were resolved via chromatographic chiral recognition and the absolute configuration was unambiguously determined by a combination of elution order and chiroptical analysis (i.e., circular dichroism). A chiral liquid chromatography tandem mass spectrometry method was fully validated and was applied to the analysis of whole blood samples collected from a controlled intranasal administration of racemic mephedrone hydrochloride to healthy male volunteers. Both enantiomers showed similar kinetics, however, R-(+)-mephedrone had a greater mean Cmax of 48.5 ± 11.9 ng/mL and a longer mean half-life of 1.92 ± 0.27 h compared with 44.6 ± 11.8 ng/mL and 1.63 ± 0.23 h for S-(−)-mephedrone, respectively. Moreover, R-(+)-mephedrone had a lower mean clearance and roughly 1.3 times greater mean area under the curve than S-(−)-mephedrone. Significant changes in the enantiomeric ratio over time were observed, which suggest that the analytes exhibit enantioselective pharmacokinetics. Even though the clinical significance of this finding is not yet fully understood, the study confirms that the chiral nature, and consequently the enantiomeric purity of mephedrone, can be a crucial consideration when interpreting toxicological results.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Arun Kumar Jarathi ◽  
Suresh Gande ◽  
Viswaja Medipally ◽  
Ramesh Bomma

Background and the purpose of the study: Risedronate sodium inhibits osteoclast bone resorption and modulates bone metabolism. Risedronate has a high affinity for hydroxyapatite crystals in bone and is a potent antiresorptive agent. In the present investigation efforts were made to improve the bioavailability of risedronate sodium by increasing the residence time of the drug through sustained-release matrix capsule formulation via gastroretentive mechanism. Capsules were prepared by wet granulation technique. The influence of gel forming agents, amount of risedronate and total weight of capsules on physical properties, in vitro buoyancy, drug release, FTIR, DSC, X-ray studies were investigated. The release mechanisms were explored and explained by applying zero order, first order, Higuchi and Korsmeyer equations. The selected formulations were subjected to stability study at 40 °C/75% RH, 25 °C/60% RH for the period of three months. For all formulations, kinetics of drug release from capsules followed Higuchi’s square root of time kinetic treatment heralding diffusion as predominant mechanism of drug release. Formulation containing 25 mg HPMC K4M and 75 mg HPMC K100 LV (F-8) showed zero order release profile. There was no significant change in the selected formulation, when subjected to accelerated stability conditions over a period of three months. X-ray imaging in six healthy human volunteers revealed a mean gastric retention period of 5.60 ± 0.77 hrs for the selected formulation. Stable, sustained release effervescent floating capsules of risedronate sodium could be prepared by wet granulation technique.  


Author(s):  
Luciana E. Bostan ◽  
Claire E. Clarkin ◽  
Mohamed Mousa ◽  
Peter R. Worsley ◽  
Daniel L. Bader ◽  
...  

1957 ◽  
Vol 103 (433) ◽  
pp. 850-854 ◽  
Author(s):  
D. A. Cahal

Some workers have claimed that nalorphine is as potent an analgesic as morphine and does not lead to addiction.


Author(s):  
Xiu‐Shi Zhang ◽  
En‐Hui Liu ◽  
Xin‐Yu Wang ◽  
Xin‐Xiang Zhou ◽  
Hong‐Xia Zhang ◽  
...  

1997 ◽  
Vol 43 (3) ◽  
pp. 533-538 ◽  
Author(s):  
James R Etchison ◽  
Hudson H Freeze

Abstract We describe a new and improved enzymatic assay for determining the concentration of d-mannose in sera. Serum d-glucose is selectively converted to glucose-6 phosphate with the highly specific thermostable glucokinase (EC 2.7.1.2) from Bacillus stearothermophilus. The anionic reaction products and excess substrates are removed by a rapid and simple anion-exchange chromatography step in microcentrifuge spin columns. d-Mannose in the glucose-depleted sample is then assayed spectrophotometrically by using coupled enzymatic reactions. The quantitative elimination of glucose from the serum samples allowed the accurate and reproducible assay of serum mannose in the 0–200 μmol/L range. Recovery of mannose added to serum (5–200 μmol/L) was 94% ± 4.4%. The intraassay CV was 6.7% at 40 μmol/L mannose (n = 5; 39.6 ± 1.6 μmol/L) and 4.4% at 80 μmol/L (n = 11; 75.0 ± 1.8 μmol/L); the interassay CV at these concentrations was 12.2% (n = 7; 36.9 ± 2.1 μmol/L) and 9.8% (n = 7; 74.2 ± 2.7 μmol/L), respectively. Sera from 11 healthy human volunteers contained an average of 54.1 ± 11.9 μmol/L mannose (range 36–81 μmol/L).


Sign in / Sign up

Export Citation Format

Share Document