reaction products
Recently Published Documents


TOTAL DOCUMENTS

6393
(FIVE YEARS 1018)

H-INDEX

108
(FIVE YEARS 14)

2022 ◽  
Vol 119 (3) ◽  
pp. e2110776118
Author(s):  
Masaoki Uno ◽  
Kodai Koyanagawa ◽  
Hisamu Kasahara ◽  
Atsushi Okamoto ◽  
Noriyoshi Tsuchiya

Hydration and carbonation reactions within the Earth cause an increase in solid volume by up to several tens of vol%, which can induce stress and rock fracture. Observations of naturally hydrated and carbonated peridotite suggest that permeability and fluid flow are enhanced by reaction-induced fracturing. However, permeability enhancement during solid-volume–increasing reactions has not been achieved in the laboratory, and the mechanisms of reaction-accelerated fluid flow remain largely unknown. Here, we present experimental evidence of significant permeability enhancement by volume-increasing reactions under confining pressure. The hydromechanical behavior of hydration of sintered periclase [MgO + H2O → Mg(OH)2] depends mainly on the initial pore-fluid connectivity. Permeability increased by three orders of magnitude for low-connectivity samples, whereas it decreased by two orders of magnitude for high-connectivity samples. Permeability enhancement was caused by hierarchical fracturing of the reacting materials, whereas a decrease was associated with homogeneous pore clogging by the reaction products. These behaviors suggest that the fluid flow rate, relative to reaction rate, is the main control on hydromechanical evolution during volume-increasing reactions. We suggest that an extremely high reaction rate and low pore-fluid connectivity lead to local stress perturbations and are essential for reaction-induced fracturing and accelerated fluid flow during hydration/carbonation.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 498
Author(s):  
Ana María Moreno de los Moreno de los Reyes ◽  
José Antonio Suárez-Navarro ◽  
María del Mar Alonso ◽  
Catalina Gascó ◽  
Isabel Sobrados ◽  
...  

The use of more eco-efficient cements in concretes is one of the keys to ensuring construction industry sustainability. Such eco-efficient binders often contain large but variable proportions of industrial waste or by-products in their composition, many of which may be naturally occurring radioactive materials (NORMs). This study explored the application of a new gamma spectrometric method for measuring radionuclide activity in hybrid alkali-activated cements from solid 5 cm cubic specimens rather than powder samples. The research involved assessing the effect of significant variables such as the nature of the alkaline activator, reaction time and curing conditions to relate the microstructures identified to the radiological behavior observed. The findings showed that varying the inputs generated pastes with similar reaction products (C-S-H, C-A-S-H and (N,C)-A-S-H) but different microstructures. The new gamma spectrometric method for measuring radioactivity in solid 5 cm cubic specimens in alkaline pastes was found to be valid. The variables involved in hybrid cement activation were shown to have no impact on specimen radioactive content. The powder samples, however, emanated 222Rn (a descendent of 226Ra), possibly due to the deformation taking place in fly ash structure during alkaline activation. Further research would be required to explain that finding.


Author(s):  
M. N. Nikitin ◽  
D. Pashchenko

In this paper, a method of deducting activation energies for heterogeneous reactions of steam methane reforming is presented. The essence of the method lies in iterative evaluation of kinetic parameters, namely activation energies of reactions, for a given reactor. The novelty of the method lies in utilizing a statistical approach to reduce computational effort of numerical simulation. The method produces multivariable correlations between activation energies and operational parameters of the process: pressure, temperature, steam-to-methane ratio, residence time, and catalyst properties. These correlations can be used for numerical simulations of steam methane reforming to yield methane conversion rate, spatial and temporal distribution of reaction products, temperature and pressure within the reactor. An average computational effort is equal to a batch of 18 ([Formula: see text]) simulations for [Formula: see text] variables. The method was demonstrated by evaluating two-variable correlations of activation energies with pressure and temperature. The developed numerical model was validated against adopted experimental data.


2022 ◽  
Vol 8 ◽  
Author(s):  
Yuan Jia ◽  
Yuxin Zou ◽  
Xinmei Zou ◽  
Yaoting Jiang ◽  
Fangyuan Li ◽  
...  

In this study, we investigated the impact of aluminium ion (Al3+) incorporation on the microstructure and the phase transformation of the magnesium silicate hydrate system. The magnesium silicate hydrate system with aluminium was prepared by mixing magnesium oxide and silica fume with different aluminium ion contents (the Al/Si molar ratios of 0.01, 0.02, 0.05, 0.1, 0.2) at room temperature. The high degree of polymerization of the magnesium silicate hydrate phases resulted in the limited incorporation of aluminium in the structure of magnesium silicate hydrate. The silicon-oxygen tetrahedra sites of magnesium silicate hydrate layers, however, were unable to substitute for silicon sites through inverted silicon-oxygen linkages. The increase in aluminium ion content raised the degree of polymerization of the magnesium silicate hydrate phases from 0.84 to 0.92. A solid solution was formed from residual aluminum-amorphous phases such as hydroxyl-aluminum and magnesium silicate hydrate phases. X-ray diffraction (XRD), field emission scanning electron microscope (F-SEM), and 29Si and 27Al MAS NMR data showed that the addition of Al3+ promotes the hydration process of MgO and has an obvious effect on the appearance of M-S-H gel. The gel with low aluminum content is fluffy, while the gel with high aluminum content has irregular flakes. The amount of Al3+ that enters the M-S-H gel increased with the increase of Al3+ content, but there was a threshold: the highest Al/Si molar ratio of M-S-H gel can be maintained at about 0.006.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
E. B. Watkins ◽  
R. C. Huber ◽  
C. M. Childs ◽  
A. Salamat ◽  
J. S. Pigott ◽  
...  

AbstractPolyethylene (C2H4)n was compressed to pressures between 10 and 30 GPa in a diamond anvil cell (DAC) and laser heated above 2500 K for approximately one second. This resulted in the chemical decomposition of the polymer into carbon and hydrocarbon reaction products. After quenching to ambient temperature, the decomposition products were measured in the DAC at pressures ranging from ambient to 29 GPa using a combination of x-ray diffraction (XRD) and small angle x-ray scattering (SAXS). XRD identified cubic diamond and methane as the predominant product species with their pressure–volume relationships exhibiting strong correlations to the diamond and methane equations of state. Length scales associated with the diamond products, obtained from SAXS measurements, indicate the formation of nanodiamonds with a radius of gyration between 12 and 35 nm consistent with 32–90 nm diameter spherical particles. These results are in good agreement with the predicted product composition under thermodynamic and chemical equilibrium.


2022 ◽  
Author(s):  
Michelia Dam ◽  
Danielle C. Draper ◽  
Andrey Marsavin ◽  
Juliane L. Fry ◽  
James N. Smith

Abstract. Chemical ionization mass spectrometry with nitrate reagent ion (NO3− CIMS) was used to investigate the products of nitrate radical (NO3) initiated oxidation of four monoterpenes in laboratory chamber experiments. α-Pinene, β-pinene, Δ-3-carene, and α-thujene were studied. The major gas-phase species produced in each system were distinctly different, showing the effect of monoterpene structure on the oxidation mechanism and further elucidated the contributions of these species to particle formation and growth. By comparing groupings of products based on ratios of elements in the general formula CwHxNyOz, the relative importance of specific mechanistic pathways (fragmentation, termination, radical rearrangement) can be assessed for each system. Additionally, the measured time series of the highly oxidized reaction products provide insights into the ratio of relative production and loss rates of the high molecular weight products of the Δ-3-carene system. Measured effective O : C ratio of reaction products were anti-correlated to new particle formation intensity and number concentration for each system; however, monomer : dimer ratio of products was positively correlated. Gas phase yields of oxidation products measured by NO3− CIMS correlated with particle number concentrations for each monoterpene system, with the exception of α-thujene, which produced a considerable amount of low volatility products but no particles. Species-resolved wall loss was measured with NO3− CIMS and found to be highly variable among oxidized reaction products in our stainless steel chamber.


Author(s):  
Qi Sun ◽  
Botao Li ◽  
Hui Wang ◽  
Yiting Wang

Abstract To study the durability of tailings and waste rock aggregate geopolymer concrete (TWGPC), a large number of tailings and waste rock were used to replace natural sand and stone as aggregates, and a fly ash geopolymer was used to replace cement as cementing material to prepare TWGPC. The slow freezing method was used to carry out single freeze-thaw and freeze-thaw corrosion tests. Scanning electron microscopy and energy dispersive spectroscopy (SEM–EDS) were used to analyse the microstructure and reaction products of TWGPC. The degradation mechanism of TWGPC was studied, and the life of TWGPC was predicted. The results show that the higher the concentration of corrosion solution was, the more significant the change trend of the mechanical properties test results. In the early stage of the cycle, acinar gypsum and short columnar ettringite were generated to fill the pores and improve the compactness and frost resistance of TWGPC. In the late stage of the cycle: calcium-silicate-hydrate (C-S-H) was decomposed and gradually replaced by magnesium-silicate-hydrate (M-S-H). The cohesion between mortar and aggregate was reduced, and a large number of products were generated. Cl- inhibited the transmission rate of SO42- and reduced the erosion effect of SO42- on TWGPC. The single freezing-thawing life prediction model had high accuracy, and the life prediction conclusion based on reliability was consistent with the appearance damage analysis, mechanical property testing and microscopic morphology analysis.


2022 ◽  
pp. 27-36
Author(s):  
LIUBOV VAKHITOVA ◽  
KONSTANTIN KALAFAT ◽  
NADIYA TARAN ◽  
VOLODYMYR BESSARABOV

Purpose. To study the influence of the carbonizing agent structure on the formation of thermal insulating char layer of intumescent system acid donor/polyol and on the fire protection efficiency of the system at high temperatures. Methodology. A fire retardant mixture of an acid donor (phosphates ammonium, urea, melamine)/ polyol was chosen as a model intumescent system. Dispersion of vinyl acetate copolymer with ethylene was used as a polymeric component. The study applied the characteristics of the char layer of the intumescent composition at a certain temperature. The volumetric intumescent coefficient (K, cm3/g), mass of char residue (m, %), structure and density of the char layer are proposed as the main estimated parameters of flame retardant effect. IR spectroscopy was used to identify products of thermolysis of intumescent systems. Determination of fire protection efficiency of intumescent coatings was carried out in a mini-oven under standard fire conditions. Findings. The influence of polyol structure on the formation of thermal insulating char layer of intumescent acid donor/polyol system and the prediction of fire protection efficiency of this system under high temperature conditions has been investigated. It has been shown that under conditions of thermal shock the fire protection efficiency is more dependent on the nucleophilic reactivity of the polyol towards the unsaturated phosphorus atom of the acid donor than on its thermal stability. It has been found that pentaerythritol, dipentaerythritol, starch, dextrin, xylitol and sorbitol are the most effective carbonizing agents, regardless of the structure of the acid donor. It has been proved by infrared spectroscopy that at high temperatures as a result of the decomposition of pentaerythritol one of the reaction products is the aldehydes interacting with pentaerythritol with the formation of oligomeric compounds with a simple ether bond C-O-C. At the same time, pentaerythritol can be considered as a universal source of carbon framework for intumescent flame retardants regardless of the phosphate structure used. Originality. It has been shown that an important factor to increase the fire protection efficiency of intumescent systems is the use of polyols with an increased nucleophilicity in the esterification between polyol and phosphoric acid.Practical value. The optimal polyols as carbonizing agents for formulation of intumescent coatings with enhanced fire protection properties have been determined.


2022 ◽  
Author(s):  
Iryna O. Borysenko ◽  
Sergiy I. Okovytyy ◽  
Jerzy Leszczynski

Abstract The algorithm for generating and estimating the probability of possible reaction pathways for multichannel bimolecular interactions was used to predict the reaction products in the reagent ratio of 1:1 and 1:2. Here we have considered the possible reaction pathways of the reaction of amine ((1S,2S,4S)-bicyclo[2.2.1]hept-5-en-2-ylmethanamine (1) with epoxides (2-((cyclohexyloxy)methyl)oxirane (2), 2-(phenoxymethyl)oxirane (3), (N-(oxiran-2-ylmethyl)-N-phenylbenzenesulfonamide 8) in order to explain experimental observed data, which indicate differences in the reactivity of glycidyl ethers and glycidylsulfonamide with framework amines. Based on the proposed algorithm [39], we have investigated the reaction in the reagent ratio of 1:1 and 1: 2. Calculated values of activation barriers indicate a low probability of formation of interaction products of amine (1) with epoxide (8) with a (1:2) reagent ratio due to steric hindrances in the reaction center.


2022 ◽  
Author(s):  
Irene P. Ayuso-Jimeno ◽  
Paolo Ronchi ◽  
Tianzi Wang ◽  
Catherine Gallori ◽  
Cornelius T. Gross

Abstract Enzymes that facilitate the local deposition of electron dense reaction products have been widely used as labels in electron microscopy (EM). Peroxidases, in particular, can efficiently metabolize 3,3′-diaminobenzidine tetrahydrochloride hydrate (DAB) to produce precipitates with high contrast under EM following heavy metal staining, and can be genetically encoded to facilitate the labeling of specific cell-types or organelles. Nevertheless, the peroxidase/DAB method has so far not been reported to work in combination with 3D volume EM techniques (e.g. Serial blockface electron microscopy, SBEM; Focused ion beam electron microscopy, FIBSEM) because the surfactant treatment needed for efficient reagent penetration disrupts tissue ultrastructure and because these methods require the deposition of large amounts of heavy metals that can obscure DAB precipitates. However, a recently described peroxidase with enhanced enzymatic activity (dAPEX2) appears to successfully deposit EM-visible DAB products in thick tissue without surfactant treatment. Here we demonstrate that multiplexed dAPEX2/DAB tagging is compatible with both FIBSEM and SBEM volume EM approaches and use them to map long-range genetically identified synaptic inputs from the anterior cingulate cortex to the periaqueductal gray in the mouse brain.


Sign in / Sign up

Export Citation Format

Share Document