Molecular Determinants for the Activating/Blocking Actions of the 2H-1,4-Benzoxazine Derivatives, a Class of Potassium Channel Modulators Targeting the Skeletal Muscle KATP Channels

2008 ◽  
Vol 74 (1) ◽  
pp. 50-58 ◽  
Author(s):  
Domenico Tricarico ◽  
Antonietta Mele ◽  
Giulia Maria Camerino ◽  
Antonio Laghezza ◽  
Giuseppe Carbonara ◽  
...  
2010 ◽  
Vol 4 ◽  
pp. SART.S6211 ◽  
Author(s):  
Vikas Seth ◽  
Mushtaq Ahmad ◽  
Prerna Upadhyaya ◽  
Monika Sharma ◽  
Vijay Moghe

The present study was conducted to investigate the effect of potassium channel openers and blockers on morphine withdrawal syndrome. Mice were rendered dependent on morphine by subcutaneous injection of morphine; four hours later, withdrawal was induced by using an opioid antagonist, naloxone. Mice were observed for 30 minutes for the withdrawal signs ie, the characteristic jumping, hyperactivity, urination and diarrhea. ATP-dependent potassium (K+ATP) channel modulators were injected intraperitoneally (i.p.) 30 minutes before the naloxone. It was found that a K+ATP channel opener, minoxidil (12.5–50 mg/kg i.p.), suppressed the morphine withdrawal significantly. On the other hand, the K+ATP channel blocker glibenclamide (12.5–50 mg/kg i.p.) caused a significant facilitation of the withdrawal. Glibenclamide was also found to abolish the minoxidil's inhibitory effect on morphine withdrawal. The study concludes that K+ATP channels play an important role in the genesis of morphine withdrawal and K+ATP channel openers could be useful in the management of opioid withdrawal. As morphine opens K+ATP channels in neurons, the channel openers possibly act by mimicking the effects of morphine on neuronal K+ currents.


Function ◽  
2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Conor McClenaghan ◽  
Yan Huang ◽  
Scot J Matkovich ◽  
Attila Kovacs ◽  
Carla J Weinheimer ◽  
...  

Abstract Dramatic cardiomegaly arising from gain-of-function (GoF) mutations in the ATP-sensitive potassium (KATP) channels genes, ABCC9 and KCNJ8, is a characteristic feature of Cantú syndrome (CS). How potassium channel over-activity results in cardiac hypertrophy, as well as the long-term consequences of cardiovascular remodeling in CS, is unknown. Using genome-edited mouse models of CS, we therefore sought to dissect the pathophysiological mechanisms linking KATP channel GoF to cardiac remodeling. We demonstrate that chronic reduction of systemic vascular resistance in CS is accompanied by elevated renin–angiotensin signaling, which drives cardiac enlargement and blood volume expansion. Cardiac enlargement in CS results in elevation of basal cardiac output, which is preserved in aging. However, the cardiac remodeling includes altered gene expression patterns that are associated with pathological hypertrophy and are accompanied by decreased exercise tolerance, suggestive of reduced cardiac reserve. Our results identify a high-output cardiac hypertrophy phenotype in CS which is etiologically and mechanistically distinct from other myocardial hypertrophies, and which exhibits key features of high-output heart failure (HOHF). We propose that CS is a genetically-defined HOHF disorder and that decreased vascular smooth muscle excitability is a novel mechanism for HOHF pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document