altered gene
Recently Published Documents


TOTAL DOCUMENTS

1002
(FIVE YEARS 246)

H-INDEX

67
(FIVE YEARS 9)

BMC Cancer ◽  
2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Teng Huang ◽  
Jiaheng Li ◽  
San Ming Wang

Abstract Background Bladder cancer is one of the most mortal cancers. Bladder cancer has distinct gene expression signature, highlighting altered gene expression plays important roles in bladder cancer etiology. However, the mechanism for how the regulatory disorder causes the altered expression in bladder cancer remains elusive. Core promoter controls transcriptional initiation. We hypothesized that mutation in core promoter abnormality could cause abnormal transcriptional initiation thereby the altered gene expression in bladder cancer. Methods In this study, we performed a genome-wide characterization of core promoter mutation in 77 Spanish bladder cancer cases. Results We identified 69 recurrent somatic mutations in 61 core promoters of 62 genes and 28 recurrent germline mutations in 20 core promoters of 21 genes, including TERT, the only gene known with core promoter mutation in bladder cancer, and many oncogenes and tumor suppressors. From the RNA-seq data from bladder cancer, we observed  altered expression of the core promoter-mutated genes. We further validated the effects of core promoter mutation on gene expression by using luciferase reporter gene assay. We also identified potential drugs targeting the core promoter-mutated genes. Conclusions Data from our study highlights that core promoter mutation contributes to bladder cancer development through altering gene expression.


Author(s):  
T. M. Milewski ◽  
W. Lee ◽  
F. A. Champagne ◽  
J. P. Curley

Individuals occupying dominant and subordinate positions in social hierarchies exhibit divergent behaviours, physiology and neural functioning. Dominant animals express higher levels of dominance behaviours such as aggression, territorial defence and mate-guarding. Dominants also signal their status via auditory, visual or chemical cues. Moreover, dominant animals typically increase reproductive behaviours and show enhanced spatial and social cognition as well as elevated arousal. These biobehavioural changes increase energetic demands that are met via shifting both energy intake and metabolism and are supported by coordinated changes in physiological systems including the hypothalamic–pituitary–adrenal and hypothalamic–pituitary–gonadal axes as well as altered gene expression and sensitivity of neural circuits that regulate these behaviours. Conversely, subordinate animals inhibit dominance and often reproductive behaviours and exhibit physiological changes adapted to socially stressful contexts. Phenotypic changes in both dominant and subordinate individuals may be beneficial in the short-term but lead to long-term challenges to health. Further, rapid changes in social ranks occur as dominant animals socially ascend or descend and are associated with dynamic modulations in the brain and periphery. In this paper, we provide a broad overview of how behavioural and phenotypic changes associated with social dominance and subordination are expressed in neural and physiological plasticity. This article is part of the theme issue ‘The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies’.


2022 ◽  
Vol 291 ◽  
pp. 110592
Author(s):  
Mansoureh Tavan ◽  
Ali Azizi ◽  
Hassan Sarikhani ◽  
Mohammad Hossein Mirjalili ◽  
Maria Manuela Rigano

Author(s):  
Sreeja Kumari Dhanya ◽  
Gaiti Hasan

Septins are cytoskeletal proteins that can assemble to form heteromeric filamentous complexes and regulate a range of membrane-associated cellular functions. SEPT7, a member of the septin family, functions as a negative regulator of the plasma membrane–localized store-operated Ca2+ entry (SOCE) channel, Orai in Drosophila neurons, and in human neural progenitor cells. Knockdown of STIM, a Ca2+ sensor in the endoplasmic reticulum (ER) and an integral component of SOCE, leads to flight deficits in Drosophila that can be rescued by partial loss of SEPT7 in neurons. Here, we tested the effect of reducing and removing SEPT7 in mouse Purkinje neurons (PNs) with the loss of STIM1. Mice with the complete knockout of STIM1 in PNs exhibit several age-dependent changes. These include altered gene expression in PNs, which correlates with increased synapses between climbing fiber (CF) axons and Purkinje neuron (PN) dendrites and a reduced ability to learn a motor coordination task. Removal of either one or two copies of the SEPT7 gene in STIM1KO PNs restored the expression of a subset of genes, including several in the category of neuron projection development. Importantly, the rescue of gene expression in these animals is accompanied by normal CF-PN innervation and an improved ability to learn a motor coordination task in aging mice. Thus, the loss of SEPT7 in PNs further modulates cerebellar circuit function in STIM1KO animals. Our findings are relevant in the context of identifying SEPT7 as a putative therapeutic target for various neurodegenerative diseases caused by reduced intracellular Ca2+ signaling.


Author(s):  
Gunnar Boysen ◽  
Intawat Nookaew

Abstract: Formation of DNA adducts is a key event for a genotoxic mode of action and its formation is often use as surrogate for mutation and cancer. Interest in DNA adducts are twofold, first, to demonstrate exposure, and second, to link DNA adduct location to subsequent mutations or altered gene regulation. High chemically specific mass spectrometry methods have been established for DNA adduct quantitation and elegant bio-analytic methods utilizing enzymes, various chemistries, and molecular biology methods to visualize the location of DNA adducts. Traditionally, these highly specific methods cannot be combined, and the results are incomparable. Initially developed for single-molecule DNA sequencing, nanopore-type technologies are expected to enable simultaneous quantitation and location of DNA adducts across the genome. We will briefly summarize the current methodologies for state-of-the-art quantitation of DNA adduct levels and mapping of DNA adducts and describe novel single-molecule DNA sequencing technology that is expected to achieve both measures simultaneously. Emerging technologies are expected to soon provide a comprehensive picture of the exposome and identify gene regions susceptible to DNA adduct formation.


RNA ◽  
2021 ◽  
pp. rna.078929.121
Author(s):  
Abdul Khalique ◽  
Sandy Mattijssen ◽  
Richard J. Maraia

The ~22 mitochondrial and ~45 cytosolic tRNAs contain several dozen different posttranscriptional modified nucleotides such that each carries a unique constellation that complements its function. Many tRNA modifications are linked to altered gene expression and their deficiencies due to mutations in tRNA modification enzymes (TMEs) are responsible for numerous diseases. Easily accessible methods to detect tRNA hypomodifications can facilitate progress in advancing such molecular studies. Our lab developed a northern blot method that can quantify relative levels of base modifications on multiple specific tRNAs ~10 years ago which has been used to characterize four different TME deficiencies and is likely further extendable. The assay method depends on differential annealing efficiency of an DNA-oligo probe to the modified versus unmodified tRNA. The signal of this probe is then normalized by a second probe elsewhere on the same tRNA. This positive hybridization in the absence of modification (PHAM) assay has proven useful for i6A37, t6A37, m3C32 and m2,2G26 in multiple laboratories. Yet, over the years we have observed idiosyncratic inconsistency and variability in the assay. Here we document these for some tRNAs and probes and illustrate principles and practices for improved reliability and uniformity in performance. We provide an overview of the method and illustrate benefits of the improved conditions. This is followed by data that demonstrate quantitative validation of PHAM using a TME deletion control, and that nearby modifications can falsely alter the calculated apparent modification efficiency. Finally, we include a calculator tool for matching probe and hybridization conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2574
Author(s):  
Anna Trojak-Goluch ◽  
Magdalena Kawka-Lipińska ◽  
Katarzyna Wielgusz ◽  
Marcin Praczyk

Polyploidisation is an important process in the evolution of many plant species. An additional set of chromosomes can be derived from intraspecific genome duplication (autopolyploidy) or hybridising divergent genomes and chromosome doubling (allopolyploidy). Special forms of polyploidy are autoallopolyploidy and segmental allopolyploidy. Polyploidy arises from two basic processes: spontaneously occurring disturbances of meiotic division and induced by antimitotic agents’ disruption of mitosis. The first involves the induction and fusion of unreduced gametes, resulting in the formation of triploids and tetraploids. The second process uses antimitotics that disrupt cellular microtubules and prevent chromosome’s sister chromatids motion during anaphase. Colchicine, oryzalin, and trifluralin are the most commonly used antimitotics for inducing polyploids in plants. The exposure time and concentration of the antimitotics and the species, cultivar, genotype, and tissue type affect the efficiency of genome duplication. Polyploids are distinguished from diploids by increased cell size and vegetative parts of plants and increased content of secondary metabolites. Genome duplication generates several changes at the epigenetic level resulting in altered gene expression. Polyploidisation is used in plant breeding to overcome the non-viability and infertility of interspecific hybrids, obtain seedless polyploid cultivars and increase resistance/tolerance to biotic and abiotic factors.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1989
Author(s):  
Ciprian Osan ◽  
Sergiu Chira ◽  
Andreea Mihaela Nutu ◽  
Cornelia Braicu ◽  
Mihaela Baciut ◽  
...  

Oral cancer is a common human malignancy that still maintains an elevated mortality rate despite scientific progress. Tumorigenesis is driven by altered gene expression patterns of proto-oncogenes and tumor-suppressor genes. MicroRNAs, a class of short non-coding RNAs involved in gene regulation, seem to play important roles in oral cancer development, progression, and tumor microenvironment modulation. As properties of microRNAs render them stable in diverse liquid biopsies, together with their differential expression signature in cancer cells, these features place microRNAs at the top of promising biomarkers for diagnostic and prognostic values. In this review, we highlight eight expression levels and functions of the most relevant microRNAs involved in oral cancer development, progression, and microenvironment sustainability. Furthermore, we emphasize the potential of using these small RNA species as non-invasive biomarkers for the early detection of oral cancerous lesions. Conclusively, we highlight the perspectives and limitations of microRNAs as novel diagnostic tools, as well as therapeutic models.


2021 ◽  
Vol 18 ◽  
Author(s):  
Isaac G. Onyango ◽  
James P. Bennett ◽  
Gorazd B. Stokin

: Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative disease and the most common cause of dementia among older adults. There are no effective treatments avail- able for the disease, and it is associated with great societal concern because of the substantial costs of providing care to its sufferers, whose numbers will increase as populations age. While multiple causes have been proposed to be significant contributors to the onset of sporadic AD, increased age is a unifying risk factor. In addition to amyloid-β (Aβ) and tau protein playing a key role in the initi- ation and progression of AD, impaired mitochondrial bioenergetics and dynamics are likely major etiological factors in AD pathogenesis and have many potential origins, including Aβ and tau. Mito- chondrial dysfunction is evident in the central nervous system (CNS) and systemically early in the disease process. Addressing these multiple mitochondrial deficiencies is a major challenge of mito- chondrial systems biology. We review evidence for mitochondrial impairments ranging from mito- chondrial DNA (mtDNA) mutations to epigenetic modification of mtDNA, altered gene expres- sion, impaired mitobiogenesis, oxidative stress, altered protein turnover and changed organelle dy- namics (fission and fusion). We also discuss therapeutic approaches, including repurposed drugs, epigenetic modifiers, and lifestyle changes that target each level of deficiency which could poten- tially alter the course of this progressive, heterogeneous Disease while being cognizant that success- ful future therapeutics may require a combinatorial approach.


Sign in / Sign up

Export Citation Format

Share Document