Quaternary Climates and Sea Levels of the U.S. Atlantic Coastal Plain

Science ◽  
1981 ◽  
Vol 211 (4479) ◽  
pp. 233-240 ◽  
Author(s):  
T. M. Cronin ◽  
B. J. Szabo ◽  
T. A. Ager ◽  
J. E. Hazel ◽  
J. P. Owens
1980 ◽  
Vol 13 (2) ◽  
pp. 213-229 ◽  
Author(s):  
Thomas M. Cronin

AbstractMarine ostracodes from 50 localities were studied to determine the age and elevation of Pleistocene sea levels in the Atlantic coastal plain from Maryland to northern Florida. Using ostracode taxon and concurrent ranges, published planktic biostratigraphic, paleomagnetic, and radiometric data, ostracode assemblage zones representing early (1.8-1.0 my), middle (0.7-0.4 my), and late (0.3-0.01 my) Pleistocene deposition were recognized and used as a basis for correlation. Ostracode biofacies signifying lagoonal, oyster bank, estuarine, open sound, and inner sublittoral environments provided estimated ranges of paleodepths for each locality. From these data the following minimum and maximum Pleistocene sea-level estimates were determined for the southeastern coastal plain: late Pleistocene, 2–10 m from Maryland to northern Florida; middle Pleistocene, 6–15 m in northern South Carolina; early Pleistocene, 4–22 m in central North Carolina, 13–35 m in southern North Carolina, and 6–27 m in South Carolina. Climatically induced glacio-eustatic sea-level fluctuations adequately account for the late Pleistocene sea-level data, but other factors, possibly differential crustal uplift, may have complicated the early Pleistocene record.


1992 ◽  
Vol 38 (3) ◽  
pp. 275-291 ◽  
Author(s):  
J. F. Wehmiller ◽  
L. L. York ◽  
D. F. Belknap ◽  
S. W. Snyder

AbstractAminostratigraphic correlations of emergent Quaternary deposits along the U.S. Atlantic Coastal Plain have employed independent radiometric data, regional temperature history models, and assumptions regarding the nature of the preserved late Quaternary sea-level record on this passive margin. A substantial “aminostratigraphic offset” is required if regional aminozones are rigorously constrained by all available Th/U data. New insights regarding the relation of this offset to subsurface stratigraphy in the Cape Fear region of southeastern North Carolina can explain these conflicts as consequences of the highly incomplete post-Cretaceous depositional record of the region. Southward projection of theoretical aminostratigraphic correlation trends suggests that stage 5 correlative marine units are rarely preserved on the emergent portion of the Coastal Plain between Cape Lookout and central South Carolina and that samples of this age would be most frequently found in this region only as fragmentary (and/or reworked) deposits on the inner shelf or in the subsurface of modern barrier islands. If this hypothesis is correct, then the accuracy of several Th/U coral dates from the South Carolina Coastal Plain must be questioned, along with sea-level, tectonic, and paleoclimatic conclusions derived from these dates.


1981 ◽  
Vol 55 (S12) ◽  
pp. 1-34 ◽  
Author(s):  
Blake W. Blackwelder

Pliocene to Holocene deposits of the U.S. Atlantic Coastal Plain from Maryland to Georgia are divided into four stages and four substages using molluscan biostratigraphic data. These divisions are the Wiltonian and Burwellian Stages (early Pliocene), Gouldian and Windyan Substages of the Colerainian Stage (late Pliocene to early Pleistocene), and Myrtlean and Yongesian Substages of the Longian Stage (late Pleistocene to Holocene). These stages may be recognized from Florida to as far north as Massachusetts and will facilitate correlation with other regions.


10.1029/ft172 ◽  
1989 ◽  
Author(s):  
W. Burleigh Harris ◽  
Vernon J. Hurst ◽  
Paul G. Nystrom ◽  
Lauck W. Ward ◽  
Charles W. Hoffman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document