Regional and local environmental factors structuring undisturbed benthic macroinvertebrate communities in the Mondego River basin, Portugal

2005 ◽  
Vol 163 (4) ◽  
pp. 497-523 ◽  
Author(s):  
M. L. Chaves ◽  
P. M. Chainho ◽  
J. L. Costa ◽  
N. Prat ◽  
M. J. Costa
Geosciences ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 150
Author(s):  
Ram Devi Tachamo Shah ◽  
Subodh Sharma ◽  
Deep Narayan Shah ◽  
Deepak Rijal

According to River Continuum Concept (RCC), channel morphology, including sediment loads and channel width, river habitat, flow regimes and water quality, differs from the tributary to the downstream river’s mainstem, allowing shifts in faunal composition from dominance of shredders to collectors downstream, respectively. Tributaries are responsible for contributing organic carbons, nutrients and water. However, such knowledge is still limited in the monsoon-dominated river systems of the Himalaya. The study was conducted in the river’s mainstem and tributaries of the Karnali River Basin, which are glacier and spring-fed river systems, respectively, in the western Himalaya, Nepal. A total of 38 river stretches in the river’s mainstem and tributaries were sampled during post-monsoon and pre-monsoon seasons in the years 2018 and 2019. Water quality parameters, such as pH, temperature, electrical conductivity, total dissolved solids, dissolved oxygen, alkalinity and hardness, and the benthic macroinvertebrates were studied. Ten subsamples of benthic macroinvertebrates were collected following the multi-habitat sampling approach at each site. High taxa richness was recorded in tributaries compared to the river’s mainstem while abundance was similar between river types. Non-metric multidimensional scaling (NMDS) formed two distinct groups, reflecting high similarities in benthic macroinvertebrate composition within the tributaries and river’s mainstem rather than between river types. Redundancy analysis (RDA) indicated water temperature and pH as major environmental predictors for benthic macroinvertebrate variability between river types. Therefore, river type-based conservation efforts that account for upstream–downstream linkages of aquatic biota and resources in freshwater ecosystems can ensure the ecological integrity of the whole river basin.


2012 ◽  
Vol 41 (4) ◽  
pp. 802-812 ◽  
Author(s):  
Alan W. Leslie ◽  
Robert F. Smith ◽  
David E. Ruppert ◽  
Kreshnik Bejleri ◽  
Joshua M. Mcgrath ◽  
...  

1981 ◽  
Vol 16 (1) ◽  
pp. 45-58 ◽  
Author(s):  
G. Krantzberg ◽  
P.M. Stokes

Abstract An investigation was made of the effects exerted by benthic macroinvertebrate communities on copper speciation in sediments from a lake which is becoming acidified. In laboratory microcosms, benthic macroinvertebrate communities stimulated the flux of copper from sediment to water. The presence of the macro-benthos resulted in a redistribution of physico-chemical copper species within the sediment with a transfer from more strongly complexed forms (HC1 extractable) to adsorbed and cation exchangeable forms (MgCl2 extractable). The role of bio-turbation in copper transformations is discussed.


Author(s):  
Mi-Jung Bae ◽  
Jeong-Ki Hong ◽  
Eui-Jin Kim

Mining activities are among the most long-lasting anthropogenic pressures on streams and rivers. Therefore, detecting different benthic macroinvertebrate assemblages in the areas recovered from mining activities is essential to establish conservation and management plans for improving the freshwater biodiversity in streams located near mining areas. We compared the stability of benthic macroinvertebrate communities between streams affected by mining activities (Hwangjicheon: NHJ and Cheolamcheon: NCA) and the least disturbed stream (Songjeonricheon: NSJ) using network analysis, self-organizing map, and indicator species analysis. Species richness was lowest at sites where stream sediments were reddened or whitened due to mining impacts in NHJ and NCA. Among functional feeding groups, the ratio of scrapers was lower (i.e., NHJ) or not observed (i.e., NCA) in the affected sites by mining. The networks (species interactions) were less connected in NHJ and NCA than in NSJ, indicating that community stability decreased in the area affected by mining activity. We identified five groups based on the similarity of benthic macroinvertebrate communities according to the gradients of mining impacts using a self-organizing map. the samples from the reference stream (clusters 1 and 5), sites located near the mining water inflow area (cluster 4), sites where stream sediments acid-sulfated (cluster 2), and sites that had recovered from mining impacts (cluster 3). Among the 40 taxa selected as indicators defined from the five clusters in self-organizing map, only few (Physa acuta, Tipula KUa, and Nemoura KUb) indicator species were selected in each cluster representing the mining-impacted sites. Our results highlighted that the benthic macroinvertebrate community complexity was lower in streams affected by mining activity. Furthermore, the range of disturbed areas in the streams, where conservation and management plans should be prioritized, can be quantified by examining alterations in the benthic macroinvertebrate community.


Sign in / Sign up

Export Citation Format

Share Document