macroinvertebrate communities
Recently Published Documents


TOTAL DOCUMENTS

1034
(FIVE YEARS 243)

H-INDEX

56
(FIVE YEARS 7)

2022 ◽  
Vol 176 ◽  
pp. 106509
Author(s):  
Quentin Salmon ◽  
Fanny Colas ◽  
Samuel Westrelin ◽  
Julien Dublon ◽  
Jean-Marc Baudoin

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 258
Author(s):  
Laura Gruppuso ◽  
Alberto Doretto ◽  
Elisa Falasco ◽  
Stefano Fenoglio ◽  
Michele Freppaz ◽  
...  

Streams and rivers are becoming increasingly intermittent in Alpine regions due to the global climate change and related increases of local water abstractions, making it fundamental to investigate the occurrence of supraseasonal drying events and their correlated effects. We aimed to investigate leaf litter decomposition, the C:N ratio of the litter, and changes in associated macroinvertebrate communities in three reaches of the Po River: One upstream, consistently perennial, a perennial mid-reach with high hydrological variability, and an intermittent downstream reach. We placed leaf litter bags of two leaf types—chestnut and oak; both showed comparable decomposition rates, but the remaining litter mass was different and was attributed to the C:N ratio and palatability. Furthermore, (1) in perennial reaches, leaf litter decomposed faster than in the intermittent ones; (2) in intermittent reaches, the C:N ratio showed a decreasing trend in both leaf types, indicating that drying affected the nitrogen consumption, therefore the conditioning phase; (3) associated macroinvertebrate communities were richer and more stable in perennial reaches, where a higher richness and abundance of EPT taxa and shredders was observed. Our results suggest that the variations in the hydrology of mountain streams caused by global climate change could significantly impact on functional processes and biodiversity of benthic communities.


Limnetica ◽  
2022 ◽  
Vol 41 (1) ◽  
pp. 121-137
Author(s):  
Daniele Debiasi ◽  
Alessandra Franceschini ◽  
Francesca Paoli ◽  
Valeria Lencioni

2022 ◽  
Vol 82 ◽  
Author(s):  
D. Figueroa ◽  
P. De los Rios-Escalante

Abstract The Cautín River is closely related with the economic development of Temuco city, (38°S; Chile). Existing knowledge of the Cautín River is limited to information about its biological characteristics as a reference for the evaluation and assessment of water quality. The object of this study was to develop taxonomic characterisation of the benthic macroinvertebrates along the main course of the Cautín River, and to study the community structure using correlation analysis between community parameters. To carry out this research, the macroinvertebrate community was studied in 10 sampling sites distributed along the main course of the river. The samples were taken in summer (1997 and 2000), when optimal hydrological conditions existed. Analysis of the samples showed that the benthic fauna was composed of 56 taxa, the dominant group being insects with 48 taxa. Three main sectors were recognised in the course of the Cautín River: high, middle and low. Each sector has restricted-distribution species, while other species are widely distributed along the river. These distribution patterns seem to be influenced by dissolved oxygen concentration, temperature, altitudinal distribution and anthropo-cultural activity, present at every sampling site. Finally, this research provides a first approach to the biology of the Cautín River. Further studies could be planned on the basis of this knowledge to investigate water quality indicators based on macroinvertebrate communities.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3391
Author(s):  
Ivo Pinto ◽  
Sara Rodrigues ◽  
Sara C. Antunes

Reservoirs are dynamic ecosystems subject to different pressures that influence and compromise their ecological structure. The main objective of this study was to evaluate the potential of using the macroinvertebrate to assess the water quality of four reservoirs (one site in Miranda—M and Pocinho—P; four sites in Aguieira—Ag1 to Ag4; and five sites in Alqueva—Al1 to Al5). The sites were sampled in autumn 2018 (A18), spring and autumn 2019 (S19 and A19) and spring 2020 (S20). In situ physical and chemical parameters were measured and a sample of water and macroinvertebrate were collected for further analyses. Total phosphorus exceeded the allowed concentrations (maximum values recorded: M—0.13 mg/L, P—0.09 mg/L, Ag3—0.22 mg/L and Al5—0.18 mg/L). Total abundance varied between 4 and 3088. Taxonomic richness was always low, between 1 and 12 taxa. The highest Shannon–Wiener value (1.91) was recorded in Ag1_A18 and Al2_A18. Pielou’s evenness varied widely across all reservoirs, from 0.06 to 0.92. Almost all the organisms found were associated with polluted water, according to the index ratings. Organisms tolerant of disturbances (e.g., Chironomidae and Oligochaeta) were associated with sites with the worst water quality, according to the Water Framework Directive (WFD), (M, Ag3, Ag4 and Al5) while organisms with moderate tolerance to disturbances (e.g., Cordullidae and Polycentropodidae) were associated with sites with better water quality (P, Ag1, Ag2 and Al1 to Al4). The macrozoobenthos index (MZB) used proved to be a sensitive tool to Portuguese reservoirs, corroborating most of the results obtained in the remaining analyses, as well as providing a clear ecological potential complementing the analysis carried out by the WFD. Based on this, the macroinvertebrate community appeared to be sensitive and able to characterize the reservoirs’ water quality.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0255619
Author(s):  
Anne Bartels ◽  
Ulrike G. Berninger ◽  
Florian Hohenberger ◽  
Stephen Wickham ◽  
Jana S. Petermann

Alpine lakes support unique communities which may respond with great sensitivity to climate change. Thus, an understanding of the drivers of the structure of communities inhabiting alpine lakes is important to predict potential changes in the future. To this end, we sampled benthic macroinvertebrate communities and measured environmental variables (water temperature, dissolved oxygen, conductivity, pH, nitrate, turbidity, blue-green algal phycocyanin, chlorophyll-a) as well as structural parameters (habitat type, lake size, maximum depth) in 28 lakes within Hohe Tauern National Park, Austria, between altitudes of 2,000 and 2,700 m a.s.l. The most abundant macroinvertebrate taxa that we found were Chironomidae and Oligochaeta. Individuals of Coleoptera, Diptera, Hemiptera, Plecoptera, Trichoptera, Tricladida, Trombidiformes, Veneroida were found across the lakes and determined to family level. Oligochaeta were not determined further. Generalized linear modeling and permanova were used to identify the impact of measured parameters on macroinvertebrate communities. We found that where rocky habitats dominated the lake littoral, total macroinvertebrate abundance and family richness were lower while the ratio of Ephemeroptera, Plecoptera and Trichoptera (EPT) was higher. Zoo- and phytoplankton densities were measured in a subset of lakes but were not closely associated with macroinvertebrate abundance or family richness. With increasing elevation, macroinvertebrate abundances in small and medium-sized lakes increased while they decreased in large lakes, with a clear shift in community composition (based on families). Our results show that habitat parameters (lake size, habitat type) have a major influence on benthic macroinvertebrate community structure whereas elevation itself did not show any significant effects on communities. However, even habitat parameters are likely to change under climate change scenarios (e.g. via increased erosion) and this may affect alpine lake macroinvertebrates.


2021 ◽  
Vol 13 (13) ◽  
pp. 20000-20010
Author(s):  
Mário Herculano de Oliveira ◽  
Lidiane Gomes de Lima ◽  
Caroline Stefani da Silva Lima ◽  
Jéssica de Oliveira Lima Gomes ◽  
Franciely Ferreira Paiva ◽  
...  

The complexity of estuaries allows for the establishment of diverse communities composed of species with different survival strategies. The vertical migration of animals in the sediment is linked to competition, escape from predators and adaptations to diurnal physio-chemical changes related to variations in water levels. The present study aimed to evaluate niche overlap and amplitude, as well as the composition and structure, of communities of polychaetes and molluscs between sediment aliquots during the day and at night. Data sampling was performed in the Tubarão River estuary. The highest individual occurrence was registered during the diurnal period. Communities of polychaetes varied significantly between sediment aliquots during the day and at night, while molluscs did not show diurnal variation. Niche overlap results for polychaetes showed higher values between aliquots during the night, while molluscs showed greater overlap during the day. This indicates that polychaetes and molluscs have different mechanisms of coexistence. This may be related to different attributes of species allowing for the division of resources among individuals. Examination of niche overlap provides insights into coexistence of mechanisms within benthic macroinvertebrate communities.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11955
Author(s):  
Carissa Ganong ◽  
Minor Hidalgo Oconitrillo ◽  
Catherine Pringle

Background Drought-driven acidification events of increasing frequency and severity are expected as a consequence of climate change, and these events may expose macroinvertebrate taxa to increased acidification beyond their tolerance levels. Recent work in lowland Costa Rica has shown that poorly-buffered tropical streams exhibit natural seasonal variation in pH, with extremely low levels (<4.5) after extreme dry seasons). Our goal was to determine the threshold of pH effects on survival of three tropical stream macroinvertebrate taxa. Methods We conducted laboratory mesocosm experiments to determine acidification effects (using diluted HCl) on three focal macroinvertebrate taxa collected from a poorly-buffered stream at La Selva Biological Station: (1) mayfly naiads (Ephemeroptera: Leptophlebiidae: Traverella holzenthali), (2) adult shrimp (Decapoda: Palaemonidae: Macrobrachium olfersii), and (3) larval midges (Diptera: Chironomidae). We also compared the effect of pH on survival and growth rates of larval midges from a poorly-buffered (pH 4.3–6.9) vs. a naturally well-buffered (pH 5.1–6.9) stream. Results/Discussion Mayfly and shrimp survival decreased between pH 4.0 and 3.5, overlapping with the range of lowest pH levels (3.6–4.0) recorded during a previous extreme El Niño Southern Oscillation event in 1998 and suggesting that increasingly extreme acidification events induced by climate change may negatively affect their survival. In contrast, survival of larval midges was unaffected by pH regimes at/above 3.5, indicating tolerance to pH levels experienced in poorly-buffered stream during seasonal acidification, which has presumably occurred over millennia. These findings highlight the potential importance of historical pH regimes in structuring macroinvertebrate communities. These results are relevant not only to lowland Neotropical streams, but also signal the need for further research in lotic ecosystems worldwide where drought-driven pH declines have been documented or are probable in the future.


Sign in / Sign up

Export Citation Format

Share Document