Na-metasomatism of flood basalt lava flows from Torres, Rio Grande do SuI, Brazil

Author(s):  
Jorge A. Dristas
2021 ◽  
Vol 8 ◽  
Author(s):  
Stephen Self ◽  
Tushar Mittal ◽  
Anne Elizabeth Jay

Constraining the eruption rates of flood basalt lava flows remains a significant challenge despite decades of work. One potential observable proxy for eruption rates is flood basalt lava-flow lobe thicknesses, a topic that we tackle here quantitatively. In this study, we provide the first global compilation of pāhoehoe lava-lobe thicknesses from various continental flood basalt provinces (∼ 3,800 measurements) to compare characteristic thicknesses within and between provinces. We refer to thin lobes (∼ ≤5 m), characteristic of “compound” lavas, as hummocky pāhoehoe lava flows or flow-fields. Conversely, we term thicker lobes, characteristic of “simple” flows, as coming from sheet-lobe-dominated flows. Data from the Deccan Traps and Columbia River flood-basalt provinces are archetypal since they have the most consistent datasets as well as established chemo- and litho-stratigraphies. Examining Deccan lobe thicknesses, we find that previously suggested (and disputed) distinct temporal and regional distributions of hummocky pāhoehoe and sheet-lobe-dominated flow fields are not strongly supported by the data and that each geochemically defined formation displays both lobe types in varying amounts. Thin flow-lobes do not appear to indicate proximity to source. The modal lobe thickness of Deccan formations with abundant “thin” lava-lobes is 8 m, while the mode for sheet-lobe-dominated formations is only 17 m. Sheet-lobes up to 75–80 m are rare in the Deccan and Columbia River Provinces, and ones >100 m are exceptional globally. For other flood basalt provinces, modal thickness plots show a prevalence toward similar lobe thicknesses to Deccan, with many provinces having some or most lobes in the 5–8 m modal range. However, median values are generally thicker, in the 8–12 m range, suggesting that sheet-lobes dominate. By contrast, lobes from non-flood basalt flow-fields (e.g., Hawai’i, Snake River Plain) show distinctly thinner modes, sub-5 m. Our results provide a quantitative basis to ascertain variations in gross lava morphology and, perhaps, this will in future be related to emplacement dynamics of different flood basalt provinces, or parts thereof. We can also systematically distinguish outlier lobes (or regions) from typical lobes in a province, e.g., North American Central Atlantic Magmatic Province lava-lobes are anomalously thick and are closely related to feeder-intrusions, thus enabling a better understanding of conditions required to produce large-volume, thick, flood basalt lava-lobes and flows.


Geosphere ◽  
2011 ◽  
Vol 7 (1) ◽  
pp. 87-96 ◽  
Author(s):  
C. E. Nelson ◽  
D. A. Jerram ◽  
R. W. Hobbs ◽  
R. Terrington ◽  
H. Kessler

2010 ◽  
pp. 161-180 ◽  
Author(s):  
Hetu C. Sheth ◽  
Jyotiranjan S. Ray ◽  
P. Senthil Kumar ◽  
Raymond A. Duraiswami ◽  
Rudra Narayan Chatterjee ◽  
...  

Author(s):  
Robert B. Smith ◽  
Lee J. Siegel

Anyone who drives through southern Idaho on Interstates 84 or 15 must endure hours and hundreds of miles of monotonous scenery: the vast, flat landscape of the Snake River Plain. In many areas, sagebrush and solidified basalt lava flows extend toward distant mountain ranges, while in other places, farmers have cultivated large expanses of volcanic soil to grow Idaho’s famous potatoes. Southern Idaho’s topography was not always so dull. Mountain ranges once ran through the region. Thanks to the Yellowstone hotspot, however, the pre-existing scenery was destroyed by several dozen of the largest kind of volcanic eruption on Earth—eruptions that formed gigantic craters, known as calderas, measuring a few tens of miles wide. Some 16.5 million years ago, the hotspot was beneath the area where Oregon, Nevada, and Idaho meet. It produced its first big caldera-forming eruptions there. As the North American plate of Earth’s surface drifted southwest over the hotspot, about 100 giant eruptions punched through the drifting plate, forming a chain of giant calderas stretching almost coo miles from the Oregon—Nevada—Idaho border, northeast across Idaho to Yellowstone National Park in northwest Wyoming. Yellowstone has been perched atop the hotspot for the past 2 million years, and a 45-by-30-mile-wide caldera now forms the heart of the national park. After the ancient landscape of southern and eastern Idaho was obliterated by the eruptions, the swath of calderas in the hotspot’s wake formed the eastern two-thirds of the vast, 50-mile-wide valley now known as the Snake River Plain. The calderas eventually were buried by basalt lava flows and sediments from the Snake River and its tributaries, concealing the incredibly violent volcanic history of the Yellowstone hotspot. Yet we now know that the hotspot created much of the flat expanse of the Snake River Plain. Like a boat speeding through water and creating an arc-shaped wave in its wake, the hotspot also left in its wake a parabola-shaped pattern of high mountains and earthquake activity flanking both sides of the Snake River Plain.


Sign in / Sign up

Export Citation Format

Share Document