quantitative basis
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 67)

H-INDEX

27
(FIVE YEARS 3)

2022 ◽  
pp. 197-205
Author(s):  
Tilottama Singh ◽  
Sukanta Kumar Baral

The notion of spirituality is a divisive area when it moves to its applicability in organizations. In today's scenario with so much of chaos and volatility in organization especially after the pandemic, one cannot ignore the significance of spiritual practices. With changing time, the significance of spirituality becomes more pertinent for employee wellbeing. With numerous studies being conducted in this field, however the research gap provides enough space for authors to work on understanding and deciding the substantial factors affecting spirituality among academicians. This study employs a positivist research approach, comprising of a quantitative basis of enquiry, and assembled data via survey questionnaires. A total of 358 questionnaires were allocated, and finally, 240 usable cases were selected for study. The factor structure was proved by using SEM. This study raises awareness on the significance of spirituality in the university wellbeing which will ultimately contribute to improving academic delivery and bringing more satisfaction. Further factor loading helps in assessment.


2021 ◽  
Vol 119 (1) ◽  
pp. e2112390119
Author(s):  
Zhouyang Shen ◽  
Kalina T. Belcheva ◽  
Mark Jelcic ◽  
King Lam Hui ◽  
Anushka Katikaneni ◽  
...  

When nuclear membranes are stretched, the peripheral membrane enzyme cytosolic phospholipase A2 (cPLA2) binds via its calcium-dependent C2 domain (cPLA2-C2) and initiates bioactive lipid signaling and tissue inflammation. More than 150 C2-like domains are encoded in vertebrate genomes. How many of them are mechanosensors and quantitative relationships between tension and membrane recruitment remain unexplored, leaving a knowledge gap in the mechanotransduction field. In this study, we imaged the mechanosensitive adsorption of cPLA2 and its C2 domain to nuclear membranes and artificial lipid bilayers, comparing it to related C2-like motifs. Stretch increased the Ca2+ sensitivity of all tested domains, promoting half-maximal binding of cPLA2 at cytoplasmic resting-Ca2+ concentrations. cPLA2-C2 bound up to 50 times tighter to stretched than to unstretched membranes. Our data suggest that a synergy of mechanosensitive Ca2+ interactions and deep, hydrophobic membrane insertion enables cPLA2-C2 to detect stretched membranes with antibody-like affinity, providing a quantitative basis for understanding mechanotransduction by C2-like domains.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009756
Author(s):  
Lara Connolley ◽  
Joanna Szczepaniak ◽  
Colin Kleanthous ◽  
Seán M. Murray

The spatial localisation of proteins is critical for most cellular function. In bacteria, this is typically achieved through capture by established landmark proteins. However, this requires that the protein is diffusive on the appropriate timescale. It is therefore unknown how the localisation of effectively immobile proteins is achieved. Here, we investigate the localisation to the division site of the slowly diffusing lipoprotein Pal, which anchors the outer membrane to the cell wall of Gram-negative bacteria. While the proton motive force-linked TolQRAB system is known to be required for this repositioning, the underlying mechanism is unresolved, especially given the very low mobility of Pal. We present a quantitative, mathematical model for Pal relocalisation in which dissociation of TolB-Pal complexes, powered by the proton motive force across the inner membrane, leads to the net transport of Pal along the outer membrane and its deposition at the division septum. We fit the model to experimental measurements of protein mobility and successfully test its predictions experimentally against mutant phenotypes. Our model not only explains a key aspect of cell division in Gram-negative bacteria, but also presents a physical mechanism for the transport of low-mobility proteins that may be applicable to multi-membrane organelles, such as mitochondria and chloroplasts.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jeongwon Seo ◽  
Hany S. Abdel-Khalik ◽  
Aaron S. Epiney

A key challenge for the introduction of any design changes, e.g., advanced fuel concepts, first-of-a-kind nuclear reactor designs, etc., is the cost of the associated experiments, which are required by law to validate the use of computer models for the various stages, starting from conceptual design, to deployment, licensing, operation, and safety. To achieve that, a criterion is needed to decide on whether a given experiment, past or planned, is relevant to the application of interest. This allows the analyst to select the best experiments for the given application leading to the highest measures of confidence for the computer model predictions. The state-of-the-art methods rely on the concept of similarity or representativity, which is a linear Gaussian-based inner-product metric measuring the angle—as weighted by a prior model parameters covariance matrix—between two gradients, one representing the application and the other a single validation experiment. This manuscript emphasizes the concept of experimental relevance which extends the basic similarity index to account for the value accrued from past experiments and the associated experimental uncertainties, both currently missing from the extant similarity methods. Accounting for multiple experiments is key to the overall experimental cost reduction by prescreening for redundant information from multiple equally-relevant experiments as measured by the basic similarity index. Accounting for experimental uncertainties is also important as it allows one to select between two different experimental setups, thus providing for a quantitative basis for sensor selection and optimization. The proposed metric is denoted by ACCRUE, short for Accumulative Correlation Coefficient for Relevance of Uncertainties in Experimental validation. Using a number of criticality experiments for highly enriched fast metal systems and low enriched thermal compound systems with accident tolerant fuel concept, the manuscript will compare the performance of the ACCRUE and basic similarity indices for prioritizing the relevance of a group of experiments to the given application.


2021 ◽  
Author(s):  
Giovanni Dalmasso ◽  
Marco Musy ◽  
Martina Niksic ◽  
Alexandre Robert-Moreno ◽  
Claudio Badia-Careaga ◽  
...  

Although the full embryonic development of species such as Drosophila and zebrafish can be 3D imaged in real time, this is not true for mammalian organs, as normal organogenesis cannot be recapitulated in vitro. Currently available 3D data is therefore ex vivo images which provide only a snap shot of development at discrete moments in time. Here we propose a computer based approach to recreate the continuous evolution in time and space of developmental stages from 3D volumetric images. Our method uses the mathematical approach of spherical harmonics to re-map discrete shape data into a space in which facilitates a smooth interpolation over time. We tested our approach on mouse limb buds (from E10 to E12.5) and embryonic hearts (from 10 to 29 somites). A key advantage of the method is that the resulting 4D trajectory takes advantage of all the available data (i.e. it is not dominated by the choice of a few "ideal" images), while also being able to interpolate well through time intervals for which there is little or no data. This method not only provides a quantitative basis for validating predictive models, but it also increases our understanding of morphogenetic processes. We believe this is the first data-driven quantitative 4D description of limb morphogenesis.


2021 ◽  
Vol 11 (24) ◽  
pp. 11909
Author(s):  
Wei Chen ◽  
Yijun Shi ◽  
Wei Wang ◽  
Wenjing Li ◽  
Chao Wu

As an important space for disaster prevention, the construction of emergency shelters is crucial for the creation of a complete disaster relief facility network. Based on the goal of the prevention of day and night disaster, short-term fixed shelters are taken as the study object of the present work, and models are designed for evacuation simulation and the spatial optimization of shelters. According to the simulation, 680 of the 2334 demand points were found to be incompletely evacuated, and the average time for everyone to be evacuated was 10.3 min. Moreover, of the 888 short-term fixed shelters, only 218 did not reach their maximum capacity. In the context of short-term fixed sheltering, Haizhu was found to have the largest number of non-evacuated people (1.11 million), and the average number of non-evacuated people in Yuexiu was the largest (2184). According to the spatial optimization data of the shelters, the numbers of target plots for new shelter resources that must be added in Haizhu, Yuexiu, Liwa, and Tianhe are 406, 164, 141, and 136, respectively, the effective shelter areas of which are 2,621,100, 2,175,300, 812,100, and 1,344,600 m2, respectively. A total of 487 short-term fixed shelters and 360 temporary shelters were newly added, and the recommended scales for Haizhu, Liwan, Tianhe, and Yuexiu were 243, 70, 58, and 116, respectively, with average effective areas of 6169 m2, 5577 m2, 8707 m2, and 12,931 m2, respectively. Additionally, the recommended scales of newly added temporary shelters in Haizhu, Liwan, Tianhe, and Yuexiu are 163, 71, 78, and 48, with an average effective area of 2706, 2581, 4017, and 6234 m2, respectively. These findings provide a direct quantitative basis for the spatial optimization of various types of emergency shelters, and the method proposed in this paper supports the planning and layout of emergency shelters, as well as the improvement of the efficiency of urban resource allocation.


Author(s):  
Desalegn Chilo ◽  
N. J. Raju

The present study was evaluated the in vivo diuretic activity of fractional extracts of A. remota in albino mice. The dried aqueous crude extracts were subjected to soxhlet extraction by n-butanol, methanol and water solvents. The mice were randomly divided into eleven groups with 8 mice in each. All fractions were administered orally at doses of 250, 500 and 1000 mg/kg to adult male mice, and the positive and negative controls were treated with furosemide (10 mg/kg, p.o) and the vehicle distilled water (2 ml/100 gm of body weight) respectively. The diuretic effect of the extracts was evaluated by measuring urine volume, urinary electrolytes and urinary pH. The result indicates that aqueous and methanolic fractions at 1000 mg/kg dose produced significant (p<0.001) increase in urine output and electrolyte excretion (p<0.001) when compared to control. Additionally, potassium sparing activity (27%, p<0.05) and high natriuretic index (2.7-3.03) were produced by the n-butanol fraction relatively even if it showed minimal effect on urine output. Therefore, from the present study it may be concluded that the compounds present in methanolic and aqueous fraction are responsible for diuretic activity. This finding together with previous results on the aqueous crude extracts provides a quantitative basis for developing a new diuretic medicine from A. remota plant.


IAWA Journal ◽  
2021 ◽  
pp. 1-9
Author(s):  
Caiping Lian ◽  
Hong Chen ◽  
Shuqin Zhang ◽  
Rong Liu ◽  
Zhihui Wu ◽  
...  

Abstract Ground parenchyma cells play a crucial role in the growth and the mechanical properties of bamboo plants. Investigation of the morphology of ground parenchyma cells is essential for understanding the physiological functions andmechanical properties of these cells. This study aimed to characterize the anatomical structure of bamboo ground parenchyma cells and provide a qualitative and quantitative basis for the more effective utilization of bamboo. To do this, the morphology of ground parenchyma cells in Moso bamboo (Phyllostachys edulis) was studied using light microscopy and field-emission environmental scanning electron microscopy. Results show that various geometric shapes of ground parenchyma cells were observed, including nearly circular, square, long, oval, and irregular shapes. Cell walls of both long and short parenchyma cells exhibited primary wall thickening and secondary wall thickening, resulting in a primary pit field and simple pits. Most long cells were strip-shaped (L/W = 2.52), while most short cells were short and wide (L/W = 0.59). The proportion of long cells was 11 times greater than that of short cells. Most long cells were filled with starch grains, and some short cells also occasionally had starch grains. These findings allowed the first construction of the three-dimensional structure of parenchyma cells.


2021 ◽  
Vol 13 (23) ◽  
pp. 4857
Author(s):  
Yue Ma ◽  
Francis Rose ◽  
Leslie Wong ◽  
Benjamin Steven Vien ◽  
Thomas Kuen ◽  
...  

Large sheets of high-density polyethene geomembrane are used as floating covers on some of the wastewater treatment lagoons at the Melbourne Water Corporation’s Western Treatment Plant. These covers provide an airtight seal for the anaerobic digestion of sewage and allow for harvesting the methane-rich biogas, which is then used to generate electricity. There is a potential for scum to develop under the covers during the anaerobic digestion of the raw sewage by microorganisms. Due to the nature of the operating environment of the lagoons and the vast size (450 m × 170 m) of these covers, a safe non-contact method to monitor the development and movement of the scum is preferred. This paper explores the potential of using a new thermographic approach to identify and monitor the scum under the covers. The approach exploits naturally occurring variations in solar intensity as a trigger for generating a transient thermal response that is then fitted to an exponential decay law to determine a cooling constant. This approach is investigated experimentally using a laboratory-scale test rig. A finite element (FE) model is constructed and shown to reliably predict the experimentally observed thermal transients and cooling constants. This FE model is then set up to simulate progressive scum accumulation with time, using a specified scumberg geometry and a stepwise change in thermal properties. The results indicate a detectable change in the cooling constant at different locations on the cover, thereby providing a quantitative basis for characterising the scum accumulation beneath the cover. The practical application and limitations of these results are briefly discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pierre Galipot ◽  
Sylvain Gerber ◽  
Martine Le Guilloux ◽  
Florian Jabbour ◽  
Catherine Damerval

Petals, the inner organs in a differentiated perianth, generally play an important role in pollinator attraction. As such they exhibit an extraordinary diversity of shapes, sizes, and colors. Being involved in pollinator attraction and reward, they are privileged targets of evolution. The corolla of the Ranunculaceae species Nigella damascena consists of elaborate nectariferous petals, made of a stalk, upper, and lower lips forming a nectar pouch, shiny pseudonectaries, and pilose ears. While the main events of petal development are properly described, a few is known about the pattern of organ size and shape covariation and the cellular dynamics during development. In this study, we investigated the relationships between morphogenesis and growth of N. damascena petals using geometric morphometrics coupled with the study of cell characteristics. First, we found that petal shape and size dynamics are allometric during development and that their covariation suggests that petal shape change dynamics are exponentially slower than growth. We then found that cell proliferation is the major driver of shape patterning during development, while petal size dynamics are mostly driven by cell expansion. Our analyses provide a quantitative basis to characterize the relationships between shape, size, and cell characteristics during the development of an elaborate floral structure. Such studies lay the ground for future evo-devo investigations of the large morphological diversity observed in nectariferous structures, in Ranunculaceae and beyond.


Sign in / Sign up

Export Citation Format

Share Document