scholarly journals Effects of Specific Zidovudine Resistance Mutations and Substrate Structure on Nucleotide-Dependent Primer Unblocking by Human Immunodeficiency Virus Type 1 Reverse Transcriptase

2002 ◽  
Vol 46 (5) ◽  
pp. 1540-1545 ◽  
Author(s):  
Peter R. Meyer ◽  
Suzanne E. Matsuura ◽  
Adviye A. Tolun ◽  
Ingrid Pfeifer ◽  
Antero G. So ◽  
...  

ABSTRACT Nucleotide-dependent unblocking of chain-terminated DNA by human immunodeficiency virus type 1 reverse transcriptase (RT) is enhanced by the presence of mutations associated with 3′-azido-3′-deoxythymidine (AZT) resistance. The increase in unblocking activity was greater for mutant combinations associated with higher levels of in vivo AZT resistance. The difference between mutant and wild-type activity was further enhanced by introduction of a methyl group into the nucleotide substrate and was decreased for a nonaromatic substrate, suggesting that π-π interactions between RT and an aromatic structure may be facilitated by these mutations.

2003 ◽  
Vol 77 (11) ◽  
pp. 6127-6137 ◽  
Author(s):  
Peter R. Meyer ◽  
Suzanne E. Matsuura ◽  
Dianna Zonarich ◽  
Rahul R. Chopra ◽  
Eric Pendarvis ◽  
...  

ABSTRACT Phosphonoformate (foscarnet) is a pyrophosphate (PPi) analogue and a potent inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), acting through the PPi binding site on the enzyme. HIV-1 RT can unblock a chain-terminated DNA primer by phosphorolytic transfer of the terminal residue to an acceptor substrate (PPi or a nucleotide such as ATP) which also interacts with the PPi binding site. Primer-unblocking activity is increased in mutants of HIV-1 that are resistant to the chain-terminating nucleoside inhibitor 3′-azido-3′-deoxythymidine (AZT). We have compared the primer-unblocking activity for HIV-1 RT containing various foscarnet resistance mutations (K65R, W88G, W88S, E89K, S117T, Q161L, M164I, and the double mutant Q161L/H208Y) alone or in combination with AZT resistance mutations. The level of primer-unblocking activity varied over a 150-fold range for these enzymes and was inversely correlated with foscarnet resistance and directly correlated with AZT resistance. Based on published crystal structures of HIV-1 RT, many of the foscarnet resistance mutations affect residues that do not make direct contact with the catalytic residues of RT, the incoming deoxynucleoside triphosphate (dNTP), or the primer-template. These mutations may confer foscarnet resistance and reduce primer unblocking by indirectly decreasing the binding and retention of foscarnet, PPi, and ATP. Alternatively, the binding position or orientation of PPi, ATP, or the primer-template may be changed in the mutant enzyme complex so that molecular interactions required for the unblocking reaction are impaired while dNTP binding and incorporation are not.


2001 ◽  
Vol 75 (10) ◽  
pp. 4832-4842 ◽  
Author(s):  
Paul L. Boyer ◽  
Stefan G. Sarafianos ◽  
Edward Arnold ◽  
Stephen H. Hughes

ABSTRACT Two distinct mechanisms can be envisioned for resistance of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) to nucleoside analogs: one in which the mutations interfere with the ability of HIV-1 RT to incorporate the analog, and the other in which the mutations enhance the excision of the analog after it has been incorporated. It has been clear for some time that there are mutations that selectively interfere with the incorporation of nucleoside analogs; however, it has only recently been proposed that zidovudine (AZT) resistance can involve the excision of the nucleoside analog after it has been incorporated into viral DNA. Although this proposal resolves some important issues, it leaves some questions unanswered. In particular, how do the AZT resistance mutations enhance excision, and what mechanism(s) causes the excision reaction to be relatively specific for AZT? We have used both structural and biochemical data to develop a model. In this model, several of the mutations associated with AZT resistance act primarily to enhance the binding of ATP, which is the most likely pyrophosphate donor in the in vivo excision reaction. The AZT resistance mutations serve to increase the affinity of RT for ATP so that, at physiological ATP concentrations, excision is reasonably efficient. So far as we can determine, the specificity of the excision reaction for an AZT-terminated primer is not due to the mutations that confer resistance, but depends instead on the structure of the region around the HIV-1 RT polymerase active site and on its interactions with the azido group of AZT. Steric constraints involving the azido group cause the end of an AZT 5′-monophosphate-terminated primer to preferentially reside at the nucleotide binding site, which favors excision.


2002 ◽  
Vol 76 (7) ◽  
pp. 3248-3256 ◽  
Author(s):  
Paul L. Boyer ◽  
Stefan G. Sarafianos ◽  
Edward Arnold ◽  
Stephen H. Hughes

ABSTRACT The M184V mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) causes resistance to lamivudine, but it also increases the sensitivity of the virus to zidovudine (3′-azido-3′-deoxythymidine; AZT). This sensitization to AZT is seen both in the presence and the absence of the mutations that confer resistance to AZT. AZT resistance is due to enhanced excision of AZT 5′-monophosphate (AZTMP) from the end of the primer by the RT of the resistant virus. Published data suggest that the excision reaction involves pyrophosphorolysis but that the likely in vivo pyrophosphate donor is not pyrophosphate but ATP. The mutations that lead to AZT resistance enhance ATP binding and, in so doing, enhance pyrophosphorolysis. The excision reaction is specific for AZT because HIV-1 RT, which can form a closed complex with a dideoxy-terminated primer and an incoming deoxynucleoside triphosphate (dNTP), does not form the closed complex with an AZTMP-terminated primer and an incoming dNTP. This means that an AZTMP-terminated primer has better access to the site where it can be excised. The M184V mutation alters the polymerase active site in a fashion that specifically interferes with ATP-mediated excision of AZTMP from the end of the primer strand. The M184V mutation does not affect the incorporation of AZT 5′-triphosphate (AZTTP), either in the presence or the absence of mutations that enhance AZTMP excision. However, in the presence of ATP, the M184V mutation does decrease the ability of HIV-1 RT to carry out AZTMP excision. Based on these results, and on the results of other excision experiments, we present a model to explain how the M184V mutation affects AZTMP excision.


2009 ◽  
Vol 53 (11) ◽  
pp. 4667-4672 ◽  
Author(s):  
Hongtao Xu ◽  
Yudong Quan ◽  
Bluma G. Brenner ◽  
Tamara Bar-Magen ◽  
Maureen Oliveira ◽  
...  

ABSTRACT Etravirine (ETR) is a second-generation nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI) active against common human immunodeficiency virus type 1 (HIV-1) drug-resistant strains. This study was designed to determine the extent to which each of the Y181C or G190A mutations in RT might confer resistance to ETR and other members of the NNRTI family of drugs. Recombinant HIV-1 RT enzymes containing either the Y181C or the G190A mutation, or both mutations in tandem, were purified. Both RNA- and DNA-dependent DNA polymerase assays were performed in order to determine the extent to which each of these mutations might confer resistance in cell-free biochemical assays against each of ETR, efavirenz, and nevirapine. Both the biochemical and the cell-based phenotypic assays confirmed the susceptibility of G190A-containing enzymes and viruses to ETR. The results of this study indicate that the G190A mutation is not associated with resistance to ETR.


2001 ◽  
Vol 75 (15) ◽  
pp. 7202-7205 ◽  
Author(s):  
Johan Lennerstrand ◽  
Kurt Hertogs ◽  
David K. Stammers ◽  
Brendan A. Larder

ABSTRACT Using a large panel of human immunodeficiency virus type 1 site-directed mutants, we have observed a higher correlation than has previously been demonstrated between zidovudine (AZT)-triphosphate resistance data at the reverse transcriptase (RT) level and corresponding viral AZT resistance. This enhanced-resistance effect at the RT level was seen with ATP and to a lesser extent with PPi when ATP was added at physiological concentrations. The ATP-dependent mechanism (analogous to pyrophosphorolysis) appears to be dominant in the mutants bearing the D67N and K70R or 69 insertion mutations, whereas the Q151M mutation seems independent of ATP for decreased binding to AZT-triphosphate.


2000 ◽  
Vol 74 (2) ◽  
pp. 1023-1028 ◽  
Author(s):  
Tomozumi Imamichi ◽  
Tanima Sinha ◽  
Hiromi Imamichi ◽  
Yi-Ming Zhang ◽  
Julie A. Metcalf ◽  
...  

ABSTRACT A variant of human immunodeficiency virus type 1 (HIV-1) possessing a deletion in the reverse transcriptase (RT) gene at codon 67 was identified in a patient who had failed combination antiretroviral therapy. This deletion initially emerged under the selective pressure of combination therapy with 3′-azido-3′-deoxythymidine (AZT) plus 2′,3′-dideoxyinosine. It has persisted for more than 3 years in association with the accumulation of a variety of other well-described drug resistance mutations and an uncharacterized mutation at RT codon 69 (T69G). Phenotypic studies demonstrated that the codon 67 deletion by itself had little effect on AZT sensitivity. However, in the context of the T69G mutation and three other mutations known to be associated with AZT resistance (K70R, T215F, and K219Q), this deletion led to a increase in AZT resistance from 8.5-fold to 445-fold. A further increase in resistance (up to 1,813-fold) was observed when two mutations associated with nonnucleoside RT inhibitor resistance (K103N and L74I) were added to the deletion T69G K70R T215F K219Q construct. Hence, these results establish that a deletion at RT codon 67 may be selected for in the presence of antiretroviral therapy and may lead to high-level resistance to AZT.


1999 ◽  
Vol 73 (4) ◽  
pp. 3455-3459 ◽  
Author(s):  
Laurence Carron de la Carrière ◽  
Sylvie Paulous ◽  
François Clavel ◽  
Fabrizio Mammano

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) variants resistant to protease inhibitors often display a reduced replicative capacity as a result of an impairment of protease function. Such fitness-impaired viruses display Gag precursor maturation defects. Here, we report that some protease inhibitor-resistant viruses also display abnormalities in the processing of reverse transcriptase (RT) by the protease. In three recombinant viruses carrying resistant protease sequences from patient plasma, we observed a marked decrease in the amount of mature RT subunits and of particle-associated RT activity compared to their parental pretherapy counterparts. We investigated the possibility that a decrease in the amount of particle-associated mature RT could affect the sensitivity of the corresponding virus to RT inhibitors. We observed a twofold increase of sensitivity to zidovudine (AZT) when a virus which carried AZT mutations was processed by a resistant protease. Interestingly, the presence of AZT-resistance mutations partially rescued the replication defect associated with the mutated protease. The interplay between resistance to protease inhibitors and to RT inhibitors described here may be relevant to the therapeutic control of HIV-1 infection.


Sign in / Sign up

Export Citation Format

Share Document