scholarly journals Rational Design of Anticytoadherence Inhibitors for Plasmodium falciparum Based on the Crystal Structure of Human Intercellular Adhesion Molecule 1

2006 ◽  
Vol 50 (2) ◽  
pp. 724-730 ◽  
Author(s):  
Matthias Dormeyer ◽  
Yvonne Adams ◽  
Bernd Kramer ◽  
Srabasti Chakravorty ◽  
Man Tsuey Tse ◽  
...  

ABSTRACT Adhesion of Plasmodium falciparum-infected erythrocytes (IE) to host endothelium has been associated with pathology in malaria. Although the interaction with endothelial cells can be complex due to the relatively large number of host receptors available for binding, specific proteins have been identified that are more commonly used than others. For example, binding to intercellular adhesion molecule 1 (ICAM 1) is found frequently in parasites from pediatric cases of malaria. The binding site for P. falciparum-infected erythrocytes on ICAM 1 has been mapped in some detail and is distinct from the site for lymphocyte function-associated antigen 1 (LFA-1). Part of the ICAM 1 binding site for P. falciparum-infected erythrocytes (the DE loop) was used to screen a library of compounds based on its structure (derived from the crystal structure of human ICAM 1). This resulted in the identification of 36 structural mimeotopes as potential competitive inhibitors of binding. One of these compounds, (+)-epigalloyl-catechin-gallate [(+)-EGCG], was found to inhibit IE adhesion to ICAM 1 in a dose-dependent manner with two variant ICAM 1-binding parasite lines, providing the first example of a potential mimeotope-based anticytoadherence inhibitor for Plasmodium falciparum.

1997 ◽  
Vol 8 (3) ◽  
pp. 501-515 ◽  
Author(s):  
K L Fisher ◽  
J Lu ◽  
L Riddle ◽  
K J Kim ◽  
L G Presta ◽  
...  

Intercellular adhesion molecule 1 (ICAM-1, CD54) is a member of the Ig superfamily and is a counterreceptor for the beta 2 integrins: lymphocyte function-associated antigen 1 (LFA-1, CD11a/CD18), complement receptor 1 (MAC-1, CD11b/CD18), and p150,95 (CD11c/CD18). Binding of ICAM-1 to these receptors mediates leukocyte-adhesive functions in immune and inflammatory responses. In this report, we describe a cell-free assay using purified recombinant extracellular domains of LFA-1 and a dimeric immunoadhesin of ICAM-1. The binding of recombinant secreted LFA-1 to ICAM-1 is divalent cation dependent (Mg2+ and Mn2+ promote binding) and sensitive to inhibition by antibodies that block LFA-1-mediated cell adhesion, indicating that its conformation mimics that of LFA-1 on activated lymphocytes. We describe six novel anti-ICAM-1 monoclonal antibodies, two of which are function blocking. Thirty-five point mutants of the ICAM-1 immunoadhesin were generated and residues important for binding of monoclonal antibodies and purified LFA-1 were identified. Nineteen of these mutants bind recombinant LFA-1 equivalently to wild type. Sixteen mutants show a 66-2500-fold decrease in LFA-1 binding yet, with few exceptions, retain binding to the monoclonal antibodies. These mutants, along with modeling studies, define the LFA-1 binding site on ICAM-1 as residues E34, K39, M64, Y66, N68, and Q73, that are predicted to lie on the CDFG beta-sheet of the Ig fold. The mutant G32A also abrogates binding to LFA-1 while retaining binding to all of the antibodies, possibly indicating a direct interaction of this residue with LFA-1. These data have allowed the generation of a highly refined model of the LFA-1 binding site of ICAM-1.


1994 ◽  
Vol 179 (1) ◽  
pp. 359-363 ◽  
Author(s):  
B Ybarrondo ◽  
A M O'Rourke ◽  
A A Brian ◽  
M F Mescher

A rapid induction of adhesion to immobilized intercellular adhesion molecule (ICAM)-1 occurs when cytotoxic T lymphocytes (CTL) are stimulated with either soluble anti-T cell receptor (TCR) monoclonal antibodies (mAb) or with immobilized alloantigen, and this binding is blocked by the addition of anti-lymphocyte function-associated (LFA)-1 mAbs. Requirements for activating LFA-1 adhesion to ICAM-1 are similar to those found for induction of binding to immobilized fibronectin (FN), but distinct from those for activating CD8-mediated adhesion to class I major histocompatibility complex. A distinct role for LFA-1 in co-signaling for TCR-dependent degranulation could not be demonstrated. In contrast, both CD8 and the FN-binding integrin provide costimulatory signals for this response. Thus, if co-signaling via LFA-1 occurs, it clearly differs from that provided by CD8 or the FN-binding integrin. On the basis of antibody blocking effects, alloantigen-dependent activation of adhesion to ICAM-1 involves both the TCR and CD8. These results support a view of CTL activation as a cascade of adhesion and signaling events, with different coreceptors making distinct contributions.


2021 ◽  
Author(s):  
Nerea Allende-Vega ◽  
Joaquin Marco Brualla ◽  
Paolo Falvo ◽  
Catherine Alexia ◽  
Michael Constantinides ◽  
...  

Abstract Solid tumor cells have an altered metabolism that can protect them from cytotoxic lymphocytes. The antidiabetic drug metformin modifies tumor cell metabolism and several clinical trials are testing its effectiveness for the treatment of solid cancers. The use of metformin in hematologic cancers has received much less attention, although allogeneic cytotoxic lymphocytes are very effective against these tumors. We show here that metformin induces expression of Natural Killer G2-D (NKG2D) ligands (NKG2DL) and intercellular adhesion molecule-1 (ICAM-1), a ligand of the lymphocyte function-associated antigen 1 (LFA-1). This leads to enhance sensitivity to cytotoxic lymphocytes. Overexpression of antiapoptotic Bcl-2 family members decrease both metformin effects. The sensitization to activated cytotoxic lymphocytes is mainly mediated by the increase on ICAM-1 levels, which favors cytotoxic lymphocytes binding to tumor cells. Finally, metformin decreases the growth of human hematological tumor cells in xenograft models, mainly in presence of monoclonal antibodies that recognize tumor antigens. Our results suggest that metformin could improve cytotoxic lymphocyte-mediated therapy.


Sign in / Sign up

Export Citation Format

Share Document