tumor cells
Recently Published Documents


TOTAL DOCUMENTS

29455
(FIVE YEARS 9373)

H-INDEX

246
(FIVE YEARS 56)

2022 ◽  
Vol 12 (3) ◽  
pp. 500-505
Author(s):  
Mouzhang Huang ◽  
Limei Zeng ◽  
Rongping Zhu ◽  
Gongqun Chen ◽  
Haijian Wu ◽  
...  

Doxorubicin (Dox) is a wide-spectrum drug to treat different kinds of cancers. However, in clinical practice, Dox usually showed untargeted distributions to the other organs, which can cause serious side effects, such as cardiotoxity. Herein, the formulation of Dox into nanoparticles is critical to enhance its distribution to tumors. Herein, we used polysaccharide, hyaluronic acid, to stabilize the Dox to form nano-precipitations (PD NPs) for the therapy of osteosarcoma. The PD NPs showed enhanced drug accumulation to tumor cells and realized better anticancer effects than free drugs.


Nano Today ◽  
2022 ◽  
Vol 42 ◽  
pp. 101359
Author(s):  
Meng Lin ◽  
Zhenzhen Yang ◽  
Yiliang Yang ◽  
Yiwei Peng ◽  
Jiajia Li ◽  
...  

2022 ◽  
Vol 16 ◽  
pp. 101321
Author(s):  
Hyemin Kim ◽  
Chan Mi Heo ◽  
Jinmyeong Oh ◽  
Hwe Hoon Chung ◽  
Eun Mi Lee ◽  
...  

Bioengineered ◽  
2022 ◽  
Vol 13 (2) ◽  
pp. 2130-2138
Author(s):  
Yasi Xing ◽  
Xinfa Zhang ◽  
Fangyuan Qin ◽  
Jingwen Yang ◽  
Lei Ai ◽  
...  

2022 ◽  
Vol 23 (2) ◽  
pp. 926
Author(s):  
Marek Mazurek ◽  
Dariusz Szczepanek ◽  
Anna Orzyłowska ◽  
Radosław Rola

Glial tumors are one of the most common lesions of the central nervous system. Despite the implementation of appropriate treatment, the prognosis is not successful. As shown in the literature, maximal tumor resection is a key element in improving therapeutic outcome. One of the methods to achieve it is the use of fluorescent intraoperative navigation with 5-aminolevulinic acid. Unfortunately, often the level of fluorescence emitted is not satisfactory, resulting in difficulties in the course of surgery. This article summarizes currently available knowledge regarding differences in the level of emitted fluorescence. It may depend on both the histological type and the genetic profile of the tumor, which is reflected in the activity and expression of enzymes involved in the intracellular metabolism of fluorescent dyes, such as PBGD, FECH, UROS, and ALAS. The transport of 5-aminolevulinic acid and its metabolites across the blood–brain barrier and cell membranes mediated by transporters, such as ABCB6 and ABCG2, is also important. Accompanying therapies, such as antiepileptic drugs or steroids, also have an impact on light emission by tumor cells. Accurate determination of the factors influencing the fluorescence of 5-aminolevulinic acid-treated cells may contribute to the improvement of fluorescence navigation in patients with highly malignant gliomas.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Ni An ◽  
Zhenjie Li ◽  
Xiaodi Yan ◽  
Hainan Zhao ◽  
Yajie Yang ◽  
...  

AbstractThe lung is one of the most sensitive tissues to ionizing radiation, thus, radiation-induced lung injury (RILI) stays a key dose-limiting factor of thoracic radiotherapy. However, there is still little progress in the effective treatment of RILI. Ras-related C3 botulinum toxin substrate1, Rac1, is a small guanosine triphosphatases involved in oxidative stress and apoptosis. Thus, Rac1 may be an important molecule that mediates radiation damage, inhibition of which may produce a protective effect on RILI. By establishing a mouse model of radiation-induced lung injury and orthotopic lung tumor-bearing mouse model, we detected the role of Rac1 inhibition in the protection of RILI and suppression of lung tumor. The results showed that ionizing radiation induces the nuclear translocation of Rac1, the latter then promotes nuclear translocation of P53 and prolongs the residence time of p53 in the nucleus, thereby promoting the transcription of Trp53inp1 which mediates p53-dependent apoptosis. Inhibition of Rac1 significantly reduce the apoptosis of normal lung epithelial cells, thereby effectively alleviating RILI. On the other hand, inhibition of Rac1 could also significantly inhibit the growth of lung tumor, increase the radiation sensitivity of tumor cells. These differential effects of Rac1 inhibition were related to the mutation and overexpression of Rac1 in tumor cells.


2022 ◽  
pp. 088532822110658
Author(s):  
Keying Xue ◽  
Bingqing Luo ◽  
Xiaoqing Li ◽  
Weixian Deng ◽  
Chunyan Zeng ◽  
...  

This study was designed to investigate the feasibility of genetic testing using circulating tumor cells (CTCs) instead of tumor tissues in lung adenocarcinoma to break through its limitation. Separation system for epithelial cell adhesion molecule (EpCAM), epidermal growth factor receptor (EGFR), and Vimentin expressing CTCs was constructed and used to capture CTCs in the blood samples of 57 patients with lung adenocarcinoma. Genetic mutations of genes involved in targeted therapies were detected by next-generation sequencing (NGS) in tissues from these patients. Blood CTC samples with the gene mutations identified by tissue-NGS were selected and corresponding gene mutations were detected by Sanger sequencing. The specificity of the CTC separation system was 95.48% and the sensitivity was 90.85%. The average number of CTCs in the blood of patients with lung adenocarcinoma was 12.47/7.5 mL. Comparison of the tissue-NGS with the CTC-Sanger sequencing showed that the consistencies of genetic mutations of EGFR ( n = 24), KRAS ( n = 9), TP53 ( n = 19), BRAF ( n = 1), ERBB2 ( n = 2), and PIK3CA ( n = 3) were 92.31%, 75.00%, 86.36%, 50.00%, 66.67%, and 75.00%, with an overall consistency of 84.06%. The CTC separation system established in this study shows high specificity and sensitivity. CTCs can be used as a suitable alternative to tumor tissues that are difficult to obtain in clinical practice and overcome the difficulties in tumor tissue collection, which is of significance in guiding clinical medication and individualized treatment with significant clinical application value in terms of genetic testing for targeted therapies in tumor treatment.


2022 ◽  
Vol 23 (2) ◽  
pp. 868
Author(s):  
Huijuan Cheng ◽  
Qian Yang ◽  
Rongrong Wang ◽  
Ruhua Luo ◽  
Shanshan Zhu ◽  
...  

Exosomes derived from tumor cells contain various molecular components, such as proteins, RNA, DNA, lipids, and carbohydrates. These components play a crucial role in all stages of tumorigenesis and development. Moreover, they reflect the physiological and pathological status of parental tumor cells. Recently, tumor-derived exosomes have become popular biomarkers for non-invasive liquid biopsy and the diagnosis of numerous cancers. The interdisciplinary significance of exosomes research has also attracted growing enthusiasm. However, the intrinsic nature of tumor-derived exosomes requires advanced methods to detect and evaluate the complex biofluid. This review analyzes the relationship between exosomes and tumors. It also summarizes the exosomal biological origin, composition, and application of molecular markers in clinical cancer diagnosis. Remarkably, this paper constitutes a comprehensive summary of the innovative research on numerous detection strategies for tumor-derived exosomes with the intent of providing a theoretical basis and reference for early diagnosis and clinical treatment of cancer.


Sign in / Sign up

Export Citation Format

Share Document