scholarly journals Use of Peptide-Major Histocompatibility Complex Tetramer Technology To Study Interactions between Staphylococcus aureus Proteins and Human Cells

2007 ◽  
Vol 75 (12) ◽  
pp. 5711-5715 ◽  
Author(s):  
Ruth C. Massey ◽  
Thomas J. Scriba ◽  
Eric L. Brown ◽  
Rodney E. Phillips ◽  
Andrew K. Sewell

ABSTRACT In this study, we report the use of peptide-major histocompatibility complex tetramer technology to study the interactions that occur between Staphylococcus aureus proteins and human leukocytes. We demonstrated that this technology can be used to study the activity of superantigens such as toxic shock syndrome toxin 1 and also found that despite similarities to known proteins (i.e., major histocompatibility complex [MHC] class II molecules and superantigens), the S. aureus Eap protein does not block MHC-T-cell receptor interactions and is not a superantigen. Instead, it has nonspecific cross-linking activity that is dependent upon having at least two of its six 110-amino-acid repeats.

1992 ◽  
Vol 175 (5) ◽  
pp. 1301-1305 ◽  
Author(s):  
N S Braunstein ◽  
D A Weber ◽  
X C Wang ◽  
E O Long ◽  
D Karp

Class II major histocompatibility complex (MHC) molecules present peptides derived from processed antigen to antigen-specific CD4-positive T cells. In addition, class II molecules bind with high affinity another class of antigens, termed superantigens. T cell stimulation by superantigens depends almost exclusively on the V beta segment expressed by the T cell receptor (TCR). Mapping of the superantigen binding site on class II molecules should provide valuable information on how MHC and TCR molecules interact. Recombinant mouse I-A class II molecules expressed on transfected L cells were analyzed for their ability to bind the toxic shock syndrome toxin 1. Polymorphic residues in the alpha helices of both the alpha and beta chains of I-A contributed to quantitative toxin binding, suggesting that the toxin binds to either a combinatorial or a conformational site on class II MHC molecules.


1994 ◽  
Vol 179 (3) ◽  
pp. 1029-1034 ◽  
Author(s):  
J Thibodeau ◽  
N Labrecque ◽  
F Denis ◽  
B T Huber ◽  
R P Sékaly

Bacterial and retroviral superantigens (SAGs) interact with major histocompatibility complex (MHC) class II molecules and stimulate T cells upon binding to the V beta portion of the T cell receptor. Whereas both types of molecules exert similar effects on T cells, they have very different primary structures. Amino acids critical for the binding of bacterial toxins to class II molecules have been identified but little is known of the molecular interactions between class II and retroviral SAGs. To determine whether both types of superantigens interact with the same regions of MHC class II molecules, we have generated mutant HLA-DR molecules which have lost the capacity to bind three bacterial toxins (Staphylococcus aureus enterotoxin A [SEA], S. aureus enterotoxin B [SEB], and toxic shock syndrome toxin 1 [TSST-1]). Cells expressing these mutated class II molecules efficiently presented two retroviral SAGs (Mtv-9 and Mtv-7) to T cells while they were unable to present the bacterial SAGs. These results demonstrate that the binding sites for both types of SAGs can be dissociated.


1996 ◽  
Vol 183 (3) ◽  
pp. 1083-1092 ◽  
Author(s):  
R Wen ◽  
G A Cole ◽  
S Surman ◽  
M A Blackman ◽  
D L Woodland

Recent studies have shown that only a subset of major histocompatibility complex (MHC) class II molecules are able to present bacterial superantigens to T cells, leading to the suggestion that class-II associated peptides may influence superantigen presentation. Here, we have assessed the potential role of peptides on superantigen presentation by (a) analyzing the ability of superantigens to block peptide-specific T cell responses and (b) analyzing the ability of individual peptides to promote superantigen presentation on I-Ab-expressing T2 cells that have a quantitative defect in antigen processing. A series of peptides is described that specifically promote either toxic shock syndrome toxin (TSST) 1 or staphylococcal enterotoxin A (SEA) presentation. Whereas some peptides promoted the presentation of TSST-1 (almost 5,000-fold in the case of one peptide), other peptides promoted the presentation of SEA. These data demonstrate that MHC class II-associated peptides differentially influence the presentation of bacterial superantigens to T cells.


2000 ◽  
Vol 46 (2) ◽  
pp. 171-179 ◽  
Author(s):  
Winnie WS Kum ◽  
Kevin B Laupland ◽  
Anthony W Chow

Staphylococcal toxic shock syndrome toxin-1 (TSST-1) is implicated in the pathogenesis of superantigen-mediated shock. We previously identified TSST-1 residues G31/S32 to be important for major histocompatibility complex (MHC) class II binding, as well as superantigenic and lethal activities. However, the site-directed TSST-1 mutant toxin, G31R, could still induce mitogenesis and low-level TNFalpha secretion, suggesting that additional MHC class II binding sites other than G31/S32 may exist. In the current study, a TSST-1-neutralizing monoclonal antibody, MAb5, was found to inhibit TSST-1 binding to human peripheral blood mononuclear cells, neutralize TSST-1-induced mitogenesis and cytokine secretion, and protect against TSST-1-induced lethality in vivo. Epitope mapping revealed that MAb5 bound to TSST-1 residues 51-56 (T(51-56);51YYSPAF56). Peptide T(51-56) was synthesized and found to also inhibit TSST-1 binding to human monocytes as well as TSST-1-induced mitogenesis, cytokine secretion, and lethality in vivo. This T(51-56) epitope, located within the beta3/beta4 loop, and the previously identified G31/S32 epitope, within the beta1/beta2 loop of TSST-1, are separated within the primary sequence, but spatially juxtaposed to each other. Collectively, these findings suggest that a discontinuous epitope comprising of regions within both the beta1/beta2 and beta3/beta4 loops, are critical for MHC class II binding, and the consequent superantigenic and lethal activities of TSST-1.


1994 ◽  
Vol 180 (5) ◽  
pp. 1921-1929 ◽  
Author(s):  
N Labrecque ◽  
J Thibodeau ◽  
W Mourad ◽  
R P Sékaly

Bacterial and retroviral superantigens (SAGs) stimulate a high proportion of T cells expressing specific variable regions of the T cell receptor (TCR) beta chain. Although most alleles and isotypes bind SAGs, polymorphisms of major histocompatibility complex (MHC) class II molecules affect their presentation to T cells. This observation has raised the possibility that a TCR-MHC class II interaction can occur during this recognition process. To address the importance of such interactions during SAG presentation, we have used a panel of murine T cell hybridomas that respond to the bacterial SAG Staphylococcal enterotoxin B (SEB) and to the retroviral SAG Mtv-7 when presented by antigen-presenting cells (APCs) expressing HLA-DR1. Amino acid substitutions of the putative TCR contact residues 59, 64, 66, 77, and 81 on the DR1 beta chain showed that these amino acids are critical for recognition of the SAG SEB by T cells. TCR-MHC class II interactions are thus required for T cell recognition of SAG. Moreover, Mtv-7 SAG recognition by the same T cell hybridomas was not affected by these mutations, suggesting that the topology of the TCR-MHC class II-SAG trimolecular complex could be different from one TCR to another and from one SAG to another.


Sign in / Sign up

Export Citation Format

Share Document