scholarly journals 4-hydroxybenzoyl coenzyme A reductase (dehydroxylating) is required for anaerobic degradation of 4-hydroxybenzoate by Rhodopseudomonas palustris and shares features with molybdenum-containing hydroxylases.

1997 ◽  
Vol 179 (3) ◽  
pp. 634-642 ◽  
Author(s):  
J Gibson ◽  
M Dispensa ◽  
C S Harwood
2005 ◽  
Vol 71 (4) ◽  
pp. 2036-2045 ◽  
Author(s):  
Bongkeun Song ◽  
Bess B. Ward

ABSTRACT Benzoyl coenzyme A (benzoyl-CoA) reductase is a central enzyme in the anaerobic degradation of organic carbon, which utilizes a common intermediate (benzoyl-CoA) in the metabolism of many aromatic compounds. The diversity of benzoyl-CoA reductase genes in denitrifying bacterial isolates capable of degrading aromatic compounds and in river and estuarine sediment samples from the Arthur Kill in New Jersey and the Chesapeake Bay in Maryland was investigated. Degenerate primers were developed from the known benzoyl-CoA reductase genes from Thauera aromatica, Rhodopseudomonas palustris, and Azoarcus evansii. PCR amplification detected benzoyl-CoA reductase genes in the denitrifying isolates belonging to α-, β-, or γ-Proteobacteria as well as in the sediment samples. Phylogenetic analysis, sequence similarity comparison, and conserved indel determination grouped the new sequences into either the bcr type (found in T. aromatica and R. palustris) or the bzd type (found in A. evansii). All the Thauera strains and the isolates from the genera Acidovorax, Bradyrhizobium, Paracoccus, Ensifer, and Pseudomonas had bcr-type benzoyl-CoA reductases with amino acid sequence similarities of more than 97%. The genes detected from Azarocus strains were assigned to the bzd type. A total of 50 environmental clones were detected from denitrifying consortium and sediment samples, and 28 clones were assigned to either the bcr or the bzd type of benzoyl-CoA reductase genes. Thus, we could determine the genetic capabilities for anaerobic degradation of aromatic compounds in sediment communities of the Chesapeake Bay and the Arthur Kill on the basis of the detection of two types of benzoyl-CoA reductase genes. The detected genes have future applications as genetic markers to monitor aromatic compound degradation in natural and engineered ecosystems.


Circulation ◽  
1997 ◽  
Vol 95 (5) ◽  
pp. 1126-1131 ◽  
Author(s):  
Gerard O'Driscoll ◽  
Danny Green ◽  
Roger R. Taylor

Sign in / Sign up

Export Citation Format

Share Document