Recombinant rabbit hemorrhagic disease virus capsid protein expressed in baculovirus self-assembles into viruslike particles and induces protection.

1994 ◽  
Vol 68 (10) ◽  
pp. 6794-6798 ◽  
Author(s):  
S Laurent ◽  
J F Vautherot ◽  
M F Madelaine ◽  
G Le Gall ◽  
D Rasschaert
2009 ◽  
Vol 90 (12) ◽  
pp. 2952-2955 ◽  
Author(s):  
Liu Chen ◽  
Guangqing Liu ◽  
Zheng Ni ◽  
Bin Yu ◽  
Tao Yun ◽  
...  

Rabbit hemorrhagic disease virus (RHDV) has two structural proteins: the major capsid protein VP60 and the minor capsid protein VP2. VP2 is speculated to play an important role in the virus life cycle. To investigate the effect of VP2 on VP60 expression, three types of experiment (baculovirus–insect cell system, mammalian–luciferase assay system and in vitro coupled transcription/translation system) were used to express VP60 alone or co-expressed with VP2. Both forms of VP60 were able to form virus-like particles in insect cells. Western blot analysis and dual-luciferase assays demonstrated that the presence of VP2 results in downregulation of the expression of VP60 in vivo. Real-time RT-PCR of mRNA levels showed that downregulation of VP60 occurs at the transcriptional level. The ability of the viral minor structural protein VP2 to regulate capsid protein levels may contribute to effective virus infection.


Vaccines ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 172 ◽  
Author(s):  
Li Wang ◽  
Tian Xia ◽  
Tiantian Guo ◽  
Yi Ru ◽  
Yanping Jiang ◽  
...  

Rabbit hemorrhagic disease virus (RHDV) is the causative agent of rabbit hemorrhagic disease (RHD). RHD, characterized by hemorrhaging, liver necrosis, and high morbidity and mortality in rabbits and hares, causes severe economic losses in the rabbit industry worldwide. Due to the lack of an efficient in-vitro propagation system for RHDV, the current vaccine is produced via chemical inactivation of crude RHDV preparation derived from the livers of infected rabbits. Inactivated vaccines are effective for controlling RHD, but the potential problems of biosafety and animal welfare have negative effects on the application of inactivated vaccines. In this study, an oral Lactobacillus casei (L. casei) vaccine was used as an antigen delivery system to express RHDV capsid protein VP60(VP1)-eGFP fusion protein. The expression of the recombinant protein was confirmed via western blotting and immunofluorescence (IFA). Our results indicate that oral administration of this probiotic vaccine can stimulate secretory immunoglobulin A (SIgA)-based mucosal and IgG-based humoral immune responses in rabbits. The immunized rabbits were completely protected against challenge with RHDV. Our findings indicate that the L. casei expression system is a new strategy for the development of a safe and efficient vaccine against RHDV.


Sign in / Sign up

Export Citation Format

Share Document