capsid protein
Recently Published Documents


TOTAL DOCUMENTS

2425
(FIVE YEARS 319)

H-INDEX

96
(FIVE YEARS 10)

2021 ◽  
Author(s):  
Florian Pfaff ◽  
Angele Breithaupt ◽  
Dennis Rubbenstroth ◽  
Sina Nippert ◽  
Christina Baumbach ◽  
...  

Rustrela virus (RusV, species Rubivirus strelense) is a recently discovered relative of rubella virus (RuV) that has been detected in cases of encephalitis across a wide spectrum of mammals, including placental and marsupial animals. Here we diagnosed two additional cases of fatal RusV-associated meningoencephalitis in a South American coati (Nasua nasua) and a Eurasian otter (Lutra lutra) that were detected in a zoological garden with history of prior RusV infections. Both animals showed abnormal movement or unusual behaviour and their brains tested positive for RusV using specific RT-qPCR and RNA in situ hybridization. As previous sequencing of RusV proved to be very challenging, we employed a sophisticated target-specific capture enrichment with specifically designed RNA baits to generate complete RusV genome sequences from both detected encephalitic animals and apparently healthy wild yellow-necked field mice (Apodemus flavicollis). Furthermore, the technique was used to revise three previously published RusV genomes from two encephalitic animals and a wild yellow-necked field mouse. Virus-to-host sequence ratio and thereby sequence coverage improved markedly using the enrichment method as compared to standard procedures. When comparing the newly generated RusV sequences to the previously published RusV genomes, we identified a previously undetected stretch of 309 nucleotides predicted to represent the intergenic region and the sequence encoding the N-terminus of the capsid protein. This indicated that the original RusV sequence was likely incomplete due to misassembly of the genome at a region with an exceptionally high G+C content of >80 mol%, which could not be resolved even by enormous sequencing efforts with standard methods. The updated capsid protein amino acid sequence now resembles those of RuV and ruhugu virus in size and harbours a predicted RNA binding domain that was not encoded in the original RusV genome version. The new sequence data indicate that RusV has the largest overall genome (9,631 nucleotides), intergenic region (290 nucleotides) and capsid protein-encoding sequence (331 codons) within the genus Rubivirus.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1644
Author(s):  
Jong-Hyuk Baek ◽  
Sang-Ho Cha ◽  
Sun-Hee Cho ◽  
Myung-Shin Lee ◽  
Changhoon Park

In recent years, porcine circovirus type 2d (PCV2d) has achieved a dominant position worldwide. Various PCV2d capsid-based vaccines have been used to alleviate concerns regarding the emergence of the variant. This study aimed to determine the dosage of recombinant PCV2d capsid protein to induce protective efficacy against experimental challenge with a virulent PCV2d strain. Conventional 3-week-old pigs were intramuscularly inoculated with different doses of the protein (60, 20, 10 and 2 µg). Four weeks after vaccination, all pigs were challenged with pathogenic PCV2d (SNU140003), which was isolated from a farm severely experiencing PCV2-associated disease in Korea. Vaccination with greater than 10 µg of the capsid protein caused a significant (p < 0.05) reduction in PCV2d viremia, lymphoid lesions and lymphoid PCV2 antigen levels in vaccinated challenged pigs compared to unvaccinated challenged pigs. The vaccination also resulted in significantly higher (p < 0.05) titers of neutralizing antibodies against PCV2d. However, the pigs vaccinated with 2 µg had significantly lower neutralizing antibody titers than the other vaccinated groups. They showed a similar level of challenged PCV2d in serum and lymphoid lesion score compared to unvaccinated challenged pigs. The difference in efficacy among the vaccinated groups indicates that there may be a baseline dosage to induce sufficient neutralizing antibodies to prevent viral replication in pigs. In conclusion, at least 10 µg dosage of capsid protein is essential for stable protective efficacy against PCV2d in a pig model.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0258311
Author(s):  
Diana S. Vargas-Bermudez ◽  
Santiago Rendon-Marin ◽  
Julian Ruiz-Saenz ◽  
Dario Mogollón ◽  
Jairo Jaime

There are a wide variety of porcine parvoviruses (PPVs) referred to as PPV1 to PPV7. The latter was discovered in 2016 and later reported in some countries in America, Asia, and Europe. PPV7 as a pathogenic agent or coinfection with other pathogens causing disease has not yet been determined. In the present study, we report the identification of PPV7 for the first time in Colombia, where it was found retrospectively since 2015 in 40% of the provinces that make up the country (13/32), and the virus was ratified for 2018 in 4/5 provinces evaluated. Additionally, partial sequencing (nucleotides 380 to 4000) was performed of four Colombian strains completely covering the VP2 and NS1 viral genes. A sequence identity greater than 99% was found when comparing them with reference strains from the USA and China. In three of the four Colombian strains, an insertion of 15 nucleotides (five amino acids) was found in the PPV7-VP2 capsid protein (540–5554 nt; 180–184 aa). Based on this insertion, the VP2 phylogenetic analysis exhibited two well-differentiated evolutionarily related groups. To evaluate the impact of this insertion on the structure of the PPV7-VP2 capsid protein, the secondary structure of two different Colombian strains was predicted, and it was determined that the insertion is located in the coil region and not involved in significant changes in the structure of the protein. The 3D structure of the PPV7-VP2 capsid protein was determined by threading and homology modeling, and it was shown that the insertion did not imply a change in the shape of the protein. Additionally, it was determined that the insertion is not involved in suppressing a potential B cell epitope, although the increase in length of the epitope could affect the interaction with molecules that allow a specific immune response.


2021 ◽  
Vol 37 (1) ◽  
pp. 287-298
Author(s):  
Liliane O. Ortlieb ◽  
Ícaro P. Caruso ◽  
Nathane C. Mebus-Antunes ◽  
Andrea T. Da Poian ◽  
Elaine da C. Petronilho ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2460
Author(s):  
Snježana Mikuličić ◽  
Johannes Strunk ◽  
Luise Florin

During initial infection, human papillomaviruses (HPV) take an unusual trafficking pathway through their host cell. It begins with a long period on the cell surface, during which the capsid is primed and a virus entry platform is formed. A specific type of clathrin-independent endocytosis and subsequent retrograde trafficking to the trans-Golgi network follow this. Cellular reorganization processes, which take place during mitosis, enable further virus transport and the establishment of infection while evading intrinsic cellular immune defenses. First, the fragmentation of the Golgi allows the release of membrane-encased virions, which are partially protected from cytoplasmic restriction factors. Second, the nuclear envelope breakdown opens the gate for these virus–vesicles to the cell nucleus. Third, the dis- and re-assembly of the PML nuclear bodies leads to the formation of modified virus-associated PML subnuclear structures, enabling viral transcription and replication. While remnants of the major capsid protein L1 and the viral DNA remain in a transport vesicle, the viral capsid protein L2 plays a crucial role during virus entry, as it adopts a membrane-spanning conformation for interaction with various cellular proteins to establish a successful infection. In this review, we follow the oncogenic HPV type 16 during its long journey into the nucleus, and contrast pro- and antiviral processes.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2332
Author(s):  
Pei-Yu Chu ◽  
Hui-Wen Huang ◽  
Michittra Boonchan ◽  
Yu-Chang Tyan ◽  
Kevin Leroy Louis ◽  
...  

Norovirus-associated diseases are the most common foodborne illnesses worldwide. Polymerase chain reaction-based methods are the primary diagnostics for clinical samples; however, the high mutation rate of norovirus makes viral amplification and genotyping challenging. Technological advances in mass spectrometry (MS) make it a promising tool for identifying disease markers. Besides, the superior sensitivity of MS and proteomic approaches may enable the detection of all variants. Thus, this study aimed to establish an MS-based system for identifying and typing norovirus. We constructed three plasmids containing the major capsid protein VP1 of the norovirus GII.4 2006b, 2006a, and 2009a strains to produce virus-like particles for use as standards. Digested peptide signals were collected using a nano-flow ultra-performance liquid chromatography mass spectrometry (nano-UPLC/MSE) system, and analyzed by ProteinLynx Global SERVER and TREE-PUZZLE software. Results revealed that the LC/MSE system had an excellent coverage rate: the system detected more than 94% of amino acids of 3.61 femtomole norovirus VP1 structural protein. In the likelihood-mapping analysis, the proportions of unresolved quartets were 2.9% and 4.9% in the VP1 and S domains, respectively, which is superior to the 15.1% unresolved quartets in current PCR-based methodology. In summary, the use of LC/MSE may efficiently monitor genotypes, and sensitively detect structural and functional mutations of noroviruses.


2021 ◽  
Author(s):  
Pingping Zhou ◽  
Lian-Feng Li ◽  
Kehui Zhang ◽  
Bing Wang ◽  
Lijie Tang ◽  
...  

African swine fever virus (ASFV) is a complex nucleocytoplasmic large DNA virus that causes African swine fever, a lethal hemorrhagic disease that currently threatens the pig industry. Recent studies have identified the viral structural proteins of infectious ASFV particles. However, the functional roles of several ASFV structural proteins remain largely unknown. Here, we characterized the function of the ASFV structural protein H240R (pH240R) in virus morphogenesis. pH240R was identified as a capsid protein using immunoelectron microscopy and interacted with the major capsid protein p72 by pulldown assays. Using a recombinant ASFV, ASFV-ΔH240R, with the H240R gene deletion from the wild-type ASFV (ASFV-WT) genome, we revealed that the infectious progeny virus titers were reduced by approximately 2.0 logs compared with ASFV-WT. Furthermore, we demonstrated that the growth defect was due to the generation of non-infectious particles with a high particle-to-infectious titer ratio in ASFV-ΔH240R-infected porcine primary alveolar macrophages (PAMs) than those of ASFV WT. Importantly, we found that pH240R did not affect virus-cell binding, endocytosis or egress but ASFV assembly; non-infectious virions containing large aberrant tubular and bilobulate structures, occupied nearly 98% of all virions were observed in ASFV-ΔH240R-infected PAMs by electron microscopy. Notably, we demonstrated that ASFV-ΔH240R infection induced high-level inflammatory cytokines expression in PAMs. Collectively, we show for the first time that pH240R is essential for ASFV icosahedral capsid formation and infectious particle production. Also, these results highlight the importance of pH240R in ASFV morphogenesis and provide a novel target for the development of ASF vaccines and antivirals. IMPORTANCE African swine fever is a lethal hemorrhagic disease of global concern that is caused by African swine fever virus (ASFV). Despite extensive research, there exist relevant gaps in knowledge of the fundamental biology of the viral life cycle. In this study, we identified pH240R as a capsid protein that interacts with the major capsid protein p72. Furthermore, we showed that pH240R was required for the efficient production of infectious progeny virus as indicated by the H240R- deleted ASFV mutant (ASFV-ΔH240R). More specifically, pH240R directs the morphogenesis of ASFV toward the icosahedral capsid in the process of assembly. In addition, ASFV-ΔH240R infection induced high-level inflammatory cytokines expression in porcine primary alveolar macrophages. Our results elucidate the role of pH240R in the process of ASFV assembly, which may instruct future research on effective vaccines or antiviral strategies.


2021 ◽  
Author(s):  
André Felipe Streck ◽  
Cláudio Wageck Canal ◽  
Uwe Truyen

Since 2001, strains of porcine parvovirus (PPV), designated 27a -like strains, were observed in Europe, suggesting a predominance of these viruses over older strains. The reasons for the obvious evolutionary advantage are unknown. Here, a series of mutants containing amino acid replacements found in the predominant field strains were generated in a PPV-NADL2 background and their impact on replication efficiency and antibody binding activity was determined. Some amino acid substitutions observed in the 27a- like strains significantly increased viral fitness and decreased neutralization activity of sera raised against commercial vaccines and old virus strains (e.g. NADL2). These mutant viruses and a monoclonal antibody raised against a classical PPV strain defined an 27a-specific neutralizing epitope around amino acid 228 of the capsid protein VP2. Based on the analysis of the mutant viruses, it is hypothesized that the predominant factor for the global spread of the PPV-27a strain substitutions is an increased viral fitness of the 27a- like viruses, possibly supported by a partial immune selection. This is reminiscent to the evolution of canine parvovirus and worldwide replacement of the original virus by the so-called new antigenic types. Importance Porcine parvovirus is one of the most important causes of reproductive failure in swine. Recently, despite the continuous use of vaccines, “new” strains emerged, leading to the hypothesis that the emergence of new amino acid substitutions could be a viral adaptation to the immune response against the commercial vaccines. Our results indicate the amino acid substitutions observed in the 27a -like strains can modify viral fitness and antigenicity. However, an absolute immune escape was not evident.


2021 ◽  
Vol 8 (11) ◽  
pp. 272
Author(s):  
Wanting Yu ◽  
Yuao Sun ◽  
Qing He ◽  
Chaoying Sun ◽  
Tian Dong ◽  
...  

Porcine circovirus 2 (PCV2), considered one of the most globally important porcine pathogens, causes postweaning multisystemic wasting syndrome (PMWS). This virus is localized in the mitochondria in pigs with PMWS. Here, we identified, for the first time, a mitochondrial localization signal (MLS) in the PCV2 capsid protein (Cap) at the N-terminus. PK-15 cells showed colocalization of the MLS-EGFP fusion protein with mitochondria. Since the PCV2 Cap also contained a nuclear localization signal (NLS) that mediated entry into the nucleus, we inferred that the subcellular localization of the PCV2 Cap is inherently complex and dependent on the viral life cycle. Furthermore, we also determined that deletion of the MLS attenuated Cap-induced apoptosis. More importantly, the MLS was essential for PCV2 replication, as absence of the MLS resulted in failure of virus rescue from cells infected with infectious clone DNA. In conclusion, the MLS of the PCV2 Cap plays critical roles in Cap-induced apoptosis, and MLS deletion of Cap is lethal for virus rescue.


Sign in / Sign up

Export Citation Format

Share Document