Protein domains involved in both in vivo and in vitro interactions between human T-cell leukemia virus type I tax and CREB.

1995 ◽  
Vol 69 (6) ◽  
pp. 3420-3432 ◽  
Author(s):  
M J Yin ◽  
E J Paulssen ◽  
J S Seeler ◽  
R B Gaynor
2003 ◽  
Vol 77 (14) ◽  
pp. 7728-7735 ◽  
Author(s):  
Jianxin Ye ◽  
Li Xie ◽  
Patrick L. Green

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are distinct oncogenic retroviruses that infect several cell types but display their biological and pathogenic activity only in T cells. Previous studies have indicated that in vivo HTLV-1 has a preferential tropism for CD4+ T cells, whereas HTLV-2 in vivo tropism is less clear but appears to favor CD8+ T cells. Both CD4+ and CD8+ T cells are susceptible to HTLV-1 and HTLV-2 infection in vitro, and HTLV-1 has a preferential immortalization and transformation tropism of CD4+ T cells, whereas HTLV-2 immortalizes and transforms primarily CD8+ T cells. The molecular mechanism that determines this tropism of HTLV-1 and HTLV-2 has not been determined. HTLV-1 and HTLV-2 carry the tax and rex transregulatory genes in separate but partially overlapping reading frames. Since Tax has been shown to be critical for cellular transformation in vitro and interacts with numerous cellular processes, we hypothesized that the viral determinant of transformation tropism is encoded by tax. Using molecular clones of HTLV-1 (Ach) and HTLV-2 (pH6neo), we constructed recombinants in which tax and overlapping rex genes of the two viruses were exchanged. p19 Gag expression from proviral clones transfected into 293T cells indicated that both recombinants contained functional Tax and Rex but with significantly altered activity compared to the wild-type clones. Stable transfectants expressing recombinant viruses were established, irradiated, and cocultured with peripheral blood mononuclear cells. Both recombinants were competent to transform T lymphocytes with an efficiency similar to that of the parental viruses. Flow cytometry analysis indicated that HTLV-1 and HTLV-1/TR2 had a preferential tropism for CD4+ T cells and that HTLV-2 and HTLV-2/TR1 had a preferential tropism for CD8+ T cells. Our results indicate that tax/rex in different genetic backgrounds display altered functional activity but ultimately do not contribute to the different in vitro transformation tropisms. This first study with recombinants between HTLV-1 and HTLV-2 is the initial step in elucidating the different pathobiologies of HTLV-1 and HTLV-2.


1992 ◽  
Vol 12 (5) ◽  
pp. 1986-1996
Author(s):  
M A Matthews ◽  
R B Markowitz ◽  
W S Dynan

The human T-cell leukemia virus type I (HTLV-I) regulatory protein Tax activates transcription of the proviral long terminal repeats and a number of cellular promoters. We have developed an in vitro system to characterize the mechanism by which Tax interacts with the host cell transcription machinery. Tax was purified from cells infected with a baculovirus expression vector. Addition of these Tax preparations to nuclear extracts from uninfected human T lymphocytes activated transcription of the HTLV-I long terminal repeat approximately 10-fold. Transcription-stimulatory activity copurified with the immunoreactive 40-kDa Tax polypeptide on gel filtration chromatography, and, as expected, the effect of recombinant Tax was diminished in HTLV-I-infected T-lymphocyte extracts containing endogenous Tax. Tax-mediated transactivation in vivo has been previously shown to require 21-bp-repeat Tax-responsive elements (TxREs) in the promoter DNA. Stimulation of transcription in vitro was also strongly dependent on these sequences. To investigate the mechanism of Tax transactivation, cellular proteins that bind the 21-bp-repeat TxREs were prepared by DNA affinity chromatography. Recombinant Tax markedly increased the formation of a specific host protein-DNA complex detected in an electrophoretic mobility shift assay. These data suggest that Tax activates transcription through a direct interaction with cellular proteins that bind to the 21-bp-repeat TxREs.


1990 ◽  
Vol 87 (3) ◽  
pp. 1071-1075 ◽  
Author(s):  
A. Tanaka ◽  
C. Takahashi ◽  
S. Yamaoka ◽  
T. Nosaka ◽  
M. Maki ◽  
...  

2009 ◽  
Vol 83 (10) ◽  
pp. 5101-5108 ◽  
Author(s):  
Shuichi Kinpara ◽  
Atsuhiko Hasegawa ◽  
Atae Utsunomiya ◽  
Hironori Nishitsuji ◽  
Hiroyuki Furukawa ◽  
...  

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL), HTLV-1-associated myelopathy/tropical spastic paraparesis, and other inflammatory diseases. Despite such severe outcomes of HTLV-1 infection, the level of HTLV-1 expression in vivo is very low and rapidly increases after transfer of cells to culture conditions. The mechanisms of this phenomenon have remained obscure. In the present study, we found that human and mouse stromal cells, such as epithelial cells and fibroblasts, suppressed HTLV-1 expression in ATL and non-ATL HTLV-1-infected cells. HTLV-1 mRNA and proteins in HTLV-1-infected cells markedly decreased upon coculture with human epithelial-like cells (HEK293T) or mouse embryo fibroblasts (NIH 3T3). When infected cells were reisolated from the cocultures, viral expression was restored to the original level over the following 48 h. Spontaneous induction of HTLV-1 expression in primary ATL cells in the first 24 h of culture was also inhibited by coculture with HEK293T cells. Coculture of HTLV-1-infected cells and HEK293T cells induced type I interferon responses, as detected by beta interferon (IFN-β) promoter activation and IFN-stimulated gene upregulation. HEK293T-mediated suppression of HTLV-1 expression was partly inhibited by antibodies to human IFN-α/β receptor. NIH 3T3-mediated suppression was markedly abrogated by neutralizing antibodies to mouse IFN-β. Furthermore, viral expression in HTLV-1-infected cells was significantly suppressed when the infected cells were intraperitoneally injected into wild-type mice but not IFN regulatory factor 7 knockout mice that are deficient of type I IFN responses. These findings indicate that the innate immune system suppresses HTLV-1 expression in vivo, at least through type I IFN.


Blood ◽  
1991 ◽  
Vol 78 (11) ◽  
pp. 2956-2961
Author(s):  
RB Gartenhaus ◽  
F Wong-Staal ◽  
ME Klotman

Infection with human T-cell leukemia virus type-I (HTLV-1) is associated with a low incidence of morbidity in the form of adult T- cell leukemia as well as neurologic disease, including tropical spastic paraparesis/HTLV-I-associated myelopathy, suggesting that there are other important factors which determine outcome of infection. HTLV-I and the human herpesvirus, cytomegalovirus (HCMV), have both been shown to infect OKT4+ T lymphocytes in vitro as well as in vivo. We investigated the effects of expression of HCMV IE-2 protein(s) on the HTLV-I long terminal repeat (LTR) containing the promoter elements in T- cell lines and primary lymphocytes. A consistent repressive effect was observed on HTLV-I LTR-driven chloramphenicol acetyl transferase activity after cotransfection with the HCMV IE-2 gene region, both in HTLV-I-producing cell lines as well as in uninfected primary peripheral blood lymphocytes and cloned lymphocyte lines. This repressive effect on the HTLV-I LTR by the HCMV IE-2 gene product(s) represent a unique interaction between two viruses capable of infecting the same target cell in vivo. Such an interaction may have important implications for disease expression associated with HTLV-I infection.


Sign in / Sign up

Export Citation Format

Share Document