Impaired fitness of human immunodeficiency virus type 1 variants with high-level resistance to protease inhibitors.

1997 ◽  
Vol 71 (2) ◽  
pp. 1089-1096 ◽  
Author(s):  
G Croteau ◽  
L Doyon ◽  
D Thibeault ◽  
G McKercher ◽  
L Pilote ◽  
...  
2003 ◽  
Vol 47 (2) ◽  
pp. 759-769 ◽  
Author(s):  
Terri Watkins ◽  
Wolfgang Resch ◽  
David Irlbeck ◽  
Ronald Swanstrom

ABSTRACT Protease inhibitors represent some of the most potent agents available for therapeutic strategies designed to inhibit human immunodeficiency virus type 1 (HIV-1) replication. Under certain circumstances the virus develops resistance to the inhibitor, thereby negating the benefits of this therapy. We have carried out selections for high-level resistance to each of three protease inhibitors (indinavir, ritonavir, and saquinavir) in cell culture. Mutations accumulated over most of the course of the increasing selective pressure. There was significant overlap in the identity of the mutations selected with the different inhibitors, and this gave rise to high levels of cross-resistance. Virus particles from the resistant variants all showed defects in processing at the NC/p1 protease cleavage site in Gag. Selections with pairs of inhibitors yielded similar patterns of resistance mutations. A virus that could replicate at near-toxic levels of the three protease inhibitors combined was selected. The pro sequence of this virus was similar to that of the viruses that had been selected for high-level resistance to each of the drugs singly. Finally, a molecular clone carrying the eight most common resistance mutations seen in these selections was characterized. The sequence of this virus was relatively stable during selection for revertants in spite of displaying poor processing at the NC/p1 site and having significantly reduced fitness. These results reveal patterns of drug resistance that extend to near the limits of attainable selective pressure with these inhibitors and confirm the patterns of cross-resistance for these three inhibitors and the attenuation of virion protein processing and fitness that accompanies high-level resistance.


2000 ◽  
Vol 74 (2) ◽  
pp. 1023-1028 ◽  
Author(s):  
Tomozumi Imamichi ◽  
Tanima Sinha ◽  
Hiromi Imamichi ◽  
Yi-Ming Zhang ◽  
Julie A. Metcalf ◽  
...  

ABSTRACT A variant of human immunodeficiency virus type 1 (HIV-1) possessing a deletion in the reverse transcriptase (RT) gene at codon 67 was identified in a patient who had failed combination antiretroviral therapy. This deletion initially emerged under the selective pressure of combination therapy with 3′-azido-3′-deoxythymidine (AZT) plus 2′,3′-dideoxyinosine. It has persisted for more than 3 years in association with the accumulation of a variety of other well-described drug resistance mutations and an uncharacterized mutation at RT codon 69 (T69G). Phenotypic studies demonstrated that the codon 67 deletion by itself had little effect on AZT sensitivity. However, in the context of the T69G mutation and three other mutations known to be associated with AZT resistance (K70R, T215F, and K219Q), this deletion led to a increase in AZT resistance from 8.5-fold to 445-fold. A further increase in resistance (up to 1,813-fold) was observed when two mutations associated with nonnucleoside RT inhibitor resistance (K103N and L74I) were added to the deletion T69G K70R T215F K219Q construct. Hence, these results establish that a deletion at RT codon 67 may be selected for in the presence of antiretroviral therapy and may lead to high-level resistance to AZT.


2009 ◽  
Vol 90 (11) ◽  
pp. 2777-2787 ◽  
Author(s):  
Claudia Muratori ◽  
Eliana Ruggiero ◽  
Antonella Sistigu ◽  
Roberta Bona ◽  
Maurizio Federico

Sexual transmission is now the most frequent means of diffusion of human immunodeficiency virus type 1 (HIV-1). Even if the underlying mechanism is still largely unknown, there is a consensus regarding the key role played by mucosal dendritic cells (DCs) in capturing HIV through contact with infected subepithelial lymphocytes, and their capacity to spread HIV by trans-infection. We found that HIV protease inhibitors (PIs) reduced virion endocytosis strongly in monocyte-derived immature (i) DCs contacting HIV-1-infected cells, and that this phenomenon led to dramatically impaired trans-infection activity. This inhibitory effect was not mediated by the block of viral protease activity, as it was also operative when donor cells were infected with a PI-resistant HIV-1 strain. The block of virus maturation imposed by PIs did not correlate with significant variations in the levels of virus expression in donor cells or of Gag/Env virion incorporation. Also, PIs did not affect the endocytosis activity of DCs. In contrast, we noticed that PI treatment inhibited the formation of cell–cell conjugates whilst reducing the expression of ICAM-1 in target iDCs. Our results contribute to a better delineation of the mechanisms underlying HIV-1 trans-infection activity in DCs, whilst having implications for the development of new anti-HIV microbicide strategies.


Sign in / Sign up

Export Citation Format

Share Document