scholarly journals Mutations of the RNase H C Helix of the Moloney Murine Leukemia Virus Reverse Transcriptase Reveal Defects in Polypurine Tract Recognition

2002 ◽  
Vol 76 (16) ◽  
pp. 8360-8373 ◽  
Author(s):  
David Lim ◽  
Marianna Orlova ◽  
Stephen P. Goff

ABSTRACT Both the RNase H domain of Moloney murine leukemia virus (Mo-MLV) reverse transcriptase (RT) and Escherichia coli RNase H possess a positively charged α-helix (C helix) and a loop that are not present in the RNase H domains of human immunodeficiency virus (HIV) RT or avian sarcoma virus RT. Although a mutant Mo-MLV RT lacking the C helix (ΔC RT) retains DNA polymerase activity on homopolymeric substrates and partial RNase H activity, reverse transcription of the viral RNA genome in vivo is defective. To identify the essential features of the C helix, a panel of Mo-MLV RT mutants was generated. Analyses of these mutant viruses revealed the importance of residues H594, I597, R601, and G602. The mutants were tested for their ability to synthesize viral DNA after acute infections and to form proper 5′ and 3′ viral DNA ends. The mutant RTs were tested in vitro for exogenous RT activity, minus-strand strong-stop DNA synthesis in endogenous RT reactions, nonspecific RNase H activity, and finally, proper cleavage at the polypurine tract-U3 junction. The R601A mutant was the most defective mutant both in vivo and in vitro and possessed very little RNase H activity. The H594A, I597A, and G602A mutants had significant reductions in RNase H activity and in their rates of viral replication. Many of the mutants formed improper viral DNA ends and were less efficient in PPT-U3 recognition and cleavage in vitro. The data show that the C helix plays a crucial role for overall RNase H cleavage activity. The data also suggest that the C helix may play an important role in polypurine tract recognition and proper formation of the plus-strand DNA's 5′ end.

2001 ◽  
Vol 75 (13) ◽  
pp. 6212-6217 ◽  
Author(s):  
Andrew G. Campbell

ABSTRACT A 157-amino-acid fragment of Moloney murine leukemia virus reverse transcriptase encoding RNase H is shown to rescue the growth-defective phenotype of an Escherichia coli mutant. In vitro assays of the recombinant wild-type protein purified from the conditionally defective mutant confirm that it is catalytically active. Mutagenesis of one of the presumptive RNase H-catalytic residues results in production of a protein variant incapable of rescue and which lacks activity in vitro. Analyses of additional active site mutants demonstrate that their encoded variant proteins lack robust activity yet are able to rescue the bacterial mutant. These results suggest that genetic complementation may be useful for in vivo screening of mutant viral RNase H gene fragments and in evaluating their function under conditions that more closely mimic physiological conditions. The rescue system may also be useful in verifying the functional outcomes of mutations based on protein structural predictions and modeling.


2007 ◽  
Vol 82 (5) ◽  
pp. 2594-2597 ◽  
Author(s):  
Robin Löving ◽  
Kejun Li ◽  
Michael Wallin ◽  
Mathilda Sjöberg ◽  
Henrik Garoff

ABSTRACT Fusion of the membrane of the Moloney murine leukemia virus (Mo-MLV) Env protein is facilitated by cleavage of the R peptide from the cytoplasmic tail of its TM subunit, but the mechanism for this effect has remained obscure. The fusion is also controlled by the isomerization of the intersubunit disulfide of the Env SU-TM complex. In the present study, we used several R-peptide-cleavage-inhibited virus mutants to show that the R peptide suppresses the isomerization reaction in both in vitro and in vivo assays. Thus, the R peptide affects early steps in the activation pathway of murine leukemia virus Env.


2006 ◽  
Vol 80 (1) ◽  
pp. 342-352 ◽  
Author(s):  
Andrew Yueh ◽  
Juliana Leung ◽  
Subarna Bhattacharyya ◽  
Lucy A. Perrone ◽  
Kenia de los Santos ◽  
...  

ABSTRACT Yeast two-hybrid screens led to the identification of Ubc9 and PIASy, the E2 and E3 small ubiquitin-like modifier (SUMO)-conjugating enzymes, as proteins interacting with the capsid (CA) protein of the Moloney murine leukemia virus. The binding site in CA for Ubc9 was mapped by deletion and alanine-scanning mutagenesis to a consensus motif for SUMOylation at residues 202 to 220, and the binding site for PIASy was mapped to residues 114 to 176, directly centered on the major homology region. Expression of CA and a tagged SUMO-1 protein resulted in covalent transfer of SUMO-1 to CA in vivo. Mutations of lysine residues to arginines near the Ubc9 binding site and mutations at the PIASy binding site reduced or eliminated CA SUMOylation. Introduction of these mutations into the complete viral genome blocked virus replication. The mutants exhibited no defects in the late stages of viral gene expression or virion assembly. Upon infection, the mutant viruses were able to carry out reverse transcription to synthesize normal levels of linear viral DNA but were unable to produce the circular viral DNAs or integrated provirus normally found in the nucleus. The results suggest that the SUMOylation of CA mediated by an interaction with Ubc9 and PIASy is required for early events of infection, after reverse transcription and before nuclear entry and viral DNA integration.


2002 ◽  
Vol 76 (23) ◽  
pp. 12376-12380 ◽  
Author(s):  
Youichi Suzuki ◽  
Robert Craigie

ABSTRACT Retroviral integration is mediated by a preintegration complex (PIC) which contains the viral DNA made by reverse transcription together with associated protein factors. Prior to association with target DNA, the PIC must avoid suicidal intramolecular integration of its viral DNA (autointegration). We have demonstrated that barrier-to-autointegration factor (BAF) blocks the autointegration of Moloney murine leukemia virus (MoMLV) PICs in vitro. In this study, we show that BAF is an authentic component of MoMLV. Analysis of the sedimentation properties of initial, salt-stripped, and BAF-reconstituted PICs reveals that the viral DNA within the PIC is reversibly compacted by BAF, consistent with the functional role of BAF in protecting the viral DNA from autointegration. Furthermore, we find that BAF can promote the association of PICs with target DNA. Thus, our data suggest that BAF plays critical roles in promoting preferential intermolecular integration by both blocking autointegration and stimulating the capture of target DNA.


2007 ◽  
Vol 81 (13) ◽  
pp. 7274-7279 ◽  
Author(s):  
Samantha L. Finstad ◽  
Naomi Rosenberg ◽  
Laura S. Levy

ABSTRACT Infection with a recombinant murine-feline gammaretrovirus, MoFe2, or with the parent virus, Moloney murine leukemia virus, caused significant reduction in B-lymphoid differentiation of bone marrow at 2 to 8 weeks postinfection. The suppression was selective, in that myeloid potential was significantly increased by infection. Analysis of cell surface markers and immunoglobulin H gene rearrangements in an in vitro model demonstrated normal B-lymphoid differentiation after infection but significantly reduced viability of differentiating cells. This reduction in viability may confer a selective advantage on undifferentiated lymphoid progenitors in the bone marrow of gammaretrovirus-infected animals and thereby contribute to the establishment of a premalignant state.


2007 ◽  
Vol 82 (5) ◽  
pp. 2358-2366 ◽  
Author(s):  
Mathilda Sjöberg ◽  
Birgitta Lindqvist ◽  
Henrik Garoff

ABSTRACT The transmembrane subunit (TM) of the trimeric retrovirus Env complex is thought to direct virus-cell membrane fusion by refolding into a cell membrane-interacting, extended form that subsequently folds back on itself into a very stable trimer of hairpin-like TM polypeptides. However, so far there is only limited evidence for the formation of a stable TM trimer during Env activation. Here we have studied the oligomer composition and stability of an intermediate and the fully activated form of Moloney murine leukemia virus (Mo-MLV) Env. Activation of Mo-MLV Env is controlled by isomerization of its intersubunit disulfide. This results in surface subunit (SU) dissociation and TM refolding. If activation is done in the presence of an alkylator, this will modify the isomerization-active thiol in the SU of Env and arrest Env at an intermediate stage, the isomerization-arrested state (IAS) of its activation pathway. We generated IAS and fully activated Envs in vitro and in vivo and studied their states of oligomerization by two-dimensional blue native polyacrylamide gel electrophoresis (PAGE) and nonreducing sodium dodecyl sulfate (SDS)-PAGE. The IAS Env was composed of trimers of SU-TM complexes, whereas the activated Env consisted of SU monomers and TM trimers. When the oligomers were subjected to mild SDS treatment the TM trimer was found to be 3.5 times more resistant than the IAS oligomer. Thus, this demonstrates that a structural conversion of TM takes place during activation, which results in the formation of a stable TM trimer.


Sign in / Sign up

Export Citation Format

Share Document