scholarly journals Characterization of H5N1 Influenza Virus Variants with Hemagglutinin Mutations Isolated from Patients

mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Yohei Watanabe ◽  
Yasuha Arai ◽  
Tomo Daidoji ◽  
Norihito Kawashita ◽  
Madiha S. Ibrahim ◽  
...  

ABSTRACTA change in viral hemagglutinin (HA) receptor binding specificity from α2,3- to α2,6-linked sialic acid is necessary for highly pathogenic avian influenza (AI) virus subtype H5N1 to become pandemic. However, details of the human-adaptive change in the H5N1 virus remain unknown. Our database search of H5N1 clade 2.2.1 viruses circulating in Egypt identified multiple HA mutations that had been selected in infected patients. Using reverse genetics, we found that increases in both human receptor specificity and the HA pH threshold for membrane fusion were necessary to facilitate replication of the virus variants in human airway epithelia. Furthermore, variants with enhanced replication in human cells had decreased HA stability, apparently to compensate for the changes in viral receptor specificity and membrane fusion activity. Our findings showed that H5N1 viruses could rapidly adapt to growth in the human airway microenvironment by altering their HA properties in infected patients and provided new insights into the human-adaptive mechanisms of AI viruses.IMPORTANCECirculation between bird and human hosts may allow H5N1 viruses to acquire amino acid changes that increase fitness for human infections. However, human-adaptive changes in H5N1 viruses have not been adequately investigated. In this study, we found that multiple HA mutations were actually selected in H5N1-infected patients and that H5N1 variants with some of these HA mutations had increased human-type receptor specificity and increased HA membrane fusion activity, both of which are advantageous for viral replication in human airway epithelia. Furthermore, HA mutants selected during viral replication in patients were likely to have less HA stability, apparently as a compensatory mechanism. These results begin to clarify the picture of the H5N1 human-adaptive mechanism.

2020 ◽  
Vol 1 (4) ◽  
pp. 100059 ◽  
Author(s):  
Andrés Pizzorno ◽  
Blandine Padey ◽  
Thomas Julien ◽  
Sophie Trouillet-Assant ◽  
Aurélien Traversier ◽  
...  

JCI Insight ◽  
2018 ◽  
Vol 3 (4) ◽  
Author(s):  
John J. Brewington ◽  
Jessica Backstrom ◽  
Amanda Feldman ◽  
Elizabeth L. Kramer ◽  
Jessica D. Moncivaiz ◽  
...  

2018 ◽  
Vol 141 (6) ◽  
pp. 2074-2084 ◽  
Author(s):  
Manel Essaidi-Laziosi ◽  
Francisco Brito ◽  
Sacha Benaoudia ◽  
Léna Royston ◽  
Valeria Cagno ◽  
...  

Science ◽  
2009 ◽  
Vol 325 (5944) ◽  
pp. 1131-1134 ◽  
Author(s):  
A. S. Shah ◽  
Y. Ben-Shahar ◽  
T. O. Moninger ◽  
J. N. Kline ◽  
M. J. Welsh

2021 ◽  
Author(s):  
Weiran Shen ◽  
Zekun Wang ◽  
Kang Ning ◽  
Fang Cheng ◽  
John F. Engelhardt ◽  
...  

Parvoviruses package a linear single-stranded DNA genome with hairpin structures at both ends. It has been thought that terminal hairpin sequences are indispensable for viral DNA replication. Here, we provide evidence that the hairpin-deleted duplex genomes of human bocavirus 1 (HBoV1) replicate in human embryonic kidney (HEK) 293 cells. We propose an alternative model for HBoV1 DNA replication in which the leading strand can initiate strand-displacement without “hairpin-transfer.” The transfection of the HBoV1 duplex genomes that retain a minimal replication origin at the right-end ( OriR ), but with extensive deletions in the right-end hairpin (REH), generated viruses in HEK293 cells at a level 10-20 times lower than the wild-type (WT) duplex genome. Importantly, these viruses that have a genome with various deletions after the OriR , but not the one retaining only the OriR , replicated in polarized human airway epithelia. We discovered that the 18-nt sequence (nt 5,403-5,420) beyond the OriR was sufficient to confer virus replication in polarized human airway epithelia, although its progeny virus production was ∼5 times lower than that of the WT virus. Thus, our study demonstrates that hairpin transfer-independent productive parvovirus DNA replication can occur. Importance Hairpin transfer-independent parvovirus replication was modeled with human bocavirus 1 (HBoV1) duplex genomes whose 5’ hairpin structure was ablated by various deletions. In HEK293 cells, these duplex viral genomes with ablated 5’/hairpin sequence replicated efficiently and generated viruses that productively infected polarized human airway epithelium. Thus, for the first time, we reveal a previously unknown phenomenon that the productive parvovirus DNA replication does not depend on the hairpin sequence at REH to initiate “rolling hairpin” DNA replication. Notably, the intermediates of viral DNA replication, as revealed two-dimensional electrophoresis, from transfections of hairpin sequence-deleted duplex genome and full-length genome in HEK293 cells, as well as from virus infection of polarized human airway epithelia are similar. Thus, the establishment of the hairpin transfer-independent parvoviral DNA replication deepens our understanding in viral DNA replication and may have implications in development of parvovirus-based viral vectors with alternative properties.


Sign in / Sign up

Export Citation Format

Share Document