gene transfer
Recently Published Documents





Sevil Erdenliğ Gürbilek ◽  
Neval Berrin Arserim ◽  
Osman Yaşar Tel ◽  
Zeynep Sertkaya ◽  
Oktay Keskin

Backgorund: Bacteriophages are closely related to the evolution and virulence of some important bacterial pathogens. Due to their highly significant roles in pathogenesis and virulence, S. aureus bacteriophages are frequently studied. Bacteriophages are grouped into two main categories depending on their life cycles. There are highly consistently lytic phages (virulent) and temperate phages. This study aimed to isolate bacteriophages and determine their phage serogroups from phage plaques in S. aureus cultures in order to show if they are lytic or lysogenic, the latter plays a major role in horizontal gene transfer. Methods: A total of 234 S. aureus isolates were recovered from milk samples from cases with gangrenous mastitis in sheep. Staphylococcal phages are determined based on the type and serogroup by PCR using specific primers. Result: Our study allowed us to determine serogroups of the isolated bacteriophages. Two phage stock samples included only one serogroup while the others included more than one phage serotypes and needed further purification Fa, L and D serogroups were not determined in the study. Present work revealed that all the isolated phages were temperate phages, which play a highly significant role in horizontal gene transfer.

2022 ◽  
pp. 2102145
Erin W. Kavanagh ◽  
Jordan J. Green

2022 ◽  
Vol 23 (2) ◽  
pp. 731
Olena V. Moshynets ◽  
Taras P. Baranovskyi ◽  
Olga S. Iungin ◽  
Nadiia P. Kysil ◽  
Larysa O. Metelytsia ◽  

The choice of effective biocides used for routine hospital practice should consider the role of disinfectants in the maintenance and development of local resistome and how they might affect antibiotic resistance gene transfer within the hospital microbial population. Currently, there is little understanding of how different biocides contribute to eDNA release that may contribute to gene transfer and subsequent environmental retention. Here, we investigated how different biocides affect the release of eDNA from mature biofilms of two opportunistic model strains Pseudomonas aeruginosa ATCC 27853 (PA) and Staphylococcus aureus ATCC 25923 (SA) and contribute to the hospital resistome in the form of surface and water contaminants and dust particles. The effect of four groups of biocides, alcohols, hydrogen peroxide, quaternary ammonium compounds, and the polymeric biocide polyhexamethylene guanidine hydrochloride (PHMG-Cl), was evaluated using PA and SA biofilms. Most biocides, except for PHMG-Cl and 70% ethanol, caused substantial eDNA release, and PHMG-Cl was found to block biofilm development when used at concentrations of 0.5% and 0.1%. This might be associated with the formation of DNA–PHMG-Cl complexes as PHMG-Cl is predicted to bind to AT base pairs by molecular docking assays. PHMG-Cl was found to bind high-molecular DNA and plasmid DNA and continued to inactivate DNA on surfaces even after 4 weeks. PHMG-Cl also effectively inactivated biofilm-associated antibiotic resistance gene eDNA released by a pan-drug-resistant Klebsiella strain, which demonstrates the potential of a polymeric biocide as a new surface-active agent to combat the spread of antibiotic resistance in hospital settings.

2022 ◽  
Vol 12 ◽  
Anastasiia O. Sosnovtseva ◽  
Olga V. Stepanova ◽  
Aleksei A. Stepanenko ◽  
Anastasia D. Voronova ◽  
Andrey V. Chadin ◽  

The regeneration of nerve tissue after spinal cord injury is a complex and poorly understood process. Medication and surgery are not very effective treatments for patients with spinal cord injuries. Gene therapy is a popular approach for the treatment of such patients. The delivery of therapeutic genes is carried out in a variety of ways, such as direct injection of therapeutic vectors at the site of injury, retrograde delivery of vectors, and ex vivo therapy using various cells. Recombinant adenoviruses are often used as vectors for gene transfer. This review discusses the advantages, limitations and prospects of adenovectors in spinal cord injury therapy.

2022 ◽  
Josh Strable ◽  
Erica Unger-Wallace ◽  
Alejandro Aragón-Raygoza ◽  
Sarah Briggs ◽  
Erik Vollbrecht

Grass inflorescences support floral structures that each bear a single grain, where variation in branch architecture directly impacts yield. The maize RAMOSA1 (ZmRA1) transcription factor acts as a key regulator of inflorescence development by imposing branch meristem determinacy. Here, we show RA1 transcripts accumulate in boundary domains adjacent to spikelet meristems in Sorghum bicolor (Sb) and Setaria viridis (Sv) inflorescences similar as in the developing maize tassel and ear. To evaluate functional conservation of syntenic RA1 orthologs and promoter cis sequences in maize, sorghum and setaria, we utilized interspecies gene transfer and assayed genetic complementation in a common inbred background by quantifying recovery of normal branching in highly ramified ra1-R mutants. A ZmRA1 transgene that includes endogenous upstream and downstream flanking sequences recovered normal tassel and ear branching in ra1-R. Interspecies expression of two transgene variants of the SbRA1 locus, modeled as the entire endogenous tandem duplication or just the non-frameshifted downstream copy, complemented ra1-R branching defects and induced novel fasciation and branch patterns. The SvRA1 locus lacks conserved, upstream noncoding cis sequences found in maize and sorghum; interspecies expression of an SvRA1 transgene did not or only partially recovered normal inflorescence forms. Driving expression of the SvRA1 coding region by the ZmRA1 upstream region, however, recovered normal inflorescence morphology in ra1-R. These data leveraging interspecies gene transfer suggest that cis-encoded temporal regulation of RA1 expression is a key factor in modulating branch meristem determinacy that ultimately impacts grass inflorescence architecture.

2022 ◽  
Miguel R Chuapoco ◽  
Nicholas Flytzanis ◽  
Nick Goeden ◽  
J Christopher Octeau ◽  
Kristina M Roxas ◽  

Adeno-associated viruses (AAVs) can enable robust and safe gene delivery to the mammalian central nervous system (CNS). While the scientific community has developed numerous neurotropic AAV variants for systemic gene-transfer to the rodent brain, there are few AAVs that efficiently access the CNS of higher order primates. We describe here AAV.CAP-Mac, an engineered AAV variant that enables systemic, brain-wide gene delivery in infants of two Old World primate species--the rhesus macaque (Macaca mulatta) and the green monkey (Chlorocebus sabaeus). We identified CAP-Mac using a multi-species selection strategy, initially screening our library in the adult common marmoset (Callithrix jacchus) and narrowing our pool of test-variants for another round of selection in infant macaques. In individual characterization, CAP-Mac robustly transduces human neurons in vitro and Old World primate neurons in vivo, where it targets all lobes of cortex, the cerebellum, and multiple subcortical regions of disease relevance. We use CAP-Mac for Brainbow-like multicolor labeling of macaque neurons throughout the brain, enabling morphological reconstruction of both medium spiny neurons and cortical pyramidal cells. Because of its broad distribution throughout the brain and high neuronal efficiency in infant Old World primates compared to AAV9, CAP-Mac shows promise for researchers and clinicians alike to unlock novel, noninvasive access to the brain for efficient gene transfer.

2022 ◽  
Theo Tricou ◽  
Eric Tannier ◽  
Damien M de Vienne

Introgression, endosymbiosis and gene transfer, i.e. Horizontal Gene Flow (HGF), are primordial sources of innovation in all domains of life. Our knowledge on HGF relies on detection methods that exploit some of its signatures left on extant genomes. One of them is the effect of HGF on branch lengths of constructed phylogenies. This signature has been formalized in statistical tests for HGF detection, and used for example to detect massive adaptive gene flows in malaria vectors or to order evolutionary events involved in eukaryogenesis. However these studies rely on the assumption that ghost lineages (all unsampled extant and extinct taxa) have little influence. We demonstrate here with simulations and data re-analysis, that when considering the more realistic condition that unsampled taxa are legion compared to sampled ones, the conclusion of these studies become unfounded or even reversed. This illustrates the necessity to recognize the existence of ghosts in evolutionary studies.

Sign in / Sign up

Export Citation Format

Share Document