U1 small nuclear ribonucleoprotein particle-protein interactions are revealed in Saccharomyces cerevisiae by in vivo competition assays

1993 ◽  
Vol 13 (4) ◽  
pp. 2126-2133
Author(s):  
F Stutz ◽  
X C Liao ◽  
M Rosbash

Two highly conserved regions of the 586-nucleotide yeast (Saccharomyces cerevisiae) U1 small nuclear RNA (snRNA) can be mutated or deleted with little or no effect on growth rate: the universally conserved loop II (corresponding to the metazoan A loop) and the yeast core region (X. Liao, L. Kretzner, B. Séraphin, and M. Rosbash, Genes Dev. 4:1766-1774, 1990). To examine the contribution of these regions to U1 small nuclear ribonucleoprotein particle (snRNP) activity, a competitor U1 gene, encoding a nonfunctional U1 snRNA molecule, was introduced into a number of strains carrying a U1 snRNA gene with loop II or yeast core mutations. The presence of the nonfunctional U1 gene lowered the growth rate of these mutant strains but not wild-type strains, consistent with the notion that mutant U1 RNAs are less active than wild-type U1 snRNAs. A detailed analysis of the U1 snRNA levels and half-lives in a number of merodiploid strains suggests that these mutant U1 snRNAs interact with U1 snRNP proteins less well than do their wild-type counterparts. Competition for protein factors during snRNP assembly could account for a number of previous observations in both yeast and mammalian cells.

1993 ◽  
Vol 13 (4) ◽  
pp. 2126-2133 ◽  
Author(s):  
F Stutz ◽  
X C Liao ◽  
M Rosbash

Two highly conserved regions of the 586-nucleotide yeast (Saccharomyces cerevisiae) U1 small nuclear RNA (snRNA) can be mutated or deleted with little or no effect on growth rate: the universally conserved loop II (corresponding to the metazoan A loop) and the yeast core region (X. Liao, L. Kretzner, B. Séraphin, and M. Rosbash, Genes Dev. 4:1766-1774, 1990). To examine the contribution of these regions to U1 small nuclear ribonucleoprotein particle (snRNP) activity, a competitor U1 gene, encoding a nonfunctional U1 snRNA molecule, was introduced into a number of strains carrying a U1 snRNA gene with loop II or yeast core mutations. The presence of the nonfunctional U1 gene lowered the growth rate of these mutant strains but not wild-type strains, consistent with the notion that mutant U1 RNAs are less active than wild-type U1 snRNAs. A detailed analysis of the U1 snRNA levels and half-lives in a number of merodiploid strains suggests that these mutant U1 snRNAs interact with U1 snRNP proteins less well than do their wild-type counterparts. Competition for protein factors during snRNP assembly could account for a number of previous observations in both yeast and mammalian cells.


1993 ◽  
Vol 13 (5) ◽  
pp. 2959-2970
Author(s):  
D S Horowitz ◽  
J Abelson

The PRP18 gene, which had been identified in a screen for pre-mRNA splicing mutants in Saccharomyces cerevisiae, has been cloned and sequenced. Yeast strains bearing only a disrupted copy of PRP18 are temperature sensitive for growth; even at a low temperature, they grow extremely slowly and do not splice pre-mRNA efficiently. This unusual temperature sensitivity can be reproduced in vitro; extracts immunodepleted of PRP18 are temperature sensitive for the second step of splicing. The PRP18 protein has been overexpressed in active form in Escherichia coli and has been purified to near homogeneity. Antibodies directed against PRP18 precipitate the U4/U5/U6 small nuclear ribonucleoprotein particle (snRNP) from yeast extracts. From extracts depleted of the U6 small nuclear RNA (snRNA), the U4 and U5 snRNAs can be immunoprecipitated, while no snRNAs can be precipitated from extracts depleted of the U5 snRNA. PRP18 therefore appears to be primarily associated with the U5 snRNP. The antibodies against PRP18 inhibit the second step of pre-mRNA splicing in vitro. Together, these results imply that the U5 snRNP plays a role in the second step of splicing and suggest a model for the action of PRP18.


1993 ◽  
Vol 13 (5) ◽  
pp. 2959-2970 ◽  
Author(s):  
D S Horowitz ◽  
J Abelson

The PRP18 gene, which had been identified in a screen for pre-mRNA splicing mutants in Saccharomyces cerevisiae, has been cloned and sequenced. Yeast strains bearing only a disrupted copy of PRP18 are temperature sensitive for growth; even at a low temperature, they grow extremely slowly and do not splice pre-mRNA efficiently. This unusual temperature sensitivity can be reproduced in vitro; extracts immunodepleted of PRP18 are temperature sensitive for the second step of splicing. The PRP18 protein has been overexpressed in active form in Escherichia coli and has been purified to near homogeneity. Antibodies directed against PRP18 precipitate the U4/U5/U6 small nuclear ribonucleoprotein particle (snRNP) from yeast extracts. From extracts depleted of the U6 small nuclear RNA (snRNA), the U4 and U5 snRNAs can be immunoprecipitated, while no snRNAs can be precipitated from extracts depleted of the U5 snRNA. PRP18 therefore appears to be primarily associated with the U5 snRNP. The antibodies against PRP18 inhibit the second step of pre-mRNA splicing in vitro. Together, these results imply that the U5 snRNP plays a role in the second step of splicing and suggest a model for the action of PRP18.


1993 ◽  
Vol 13 (6) ◽  
pp. 3135-3145
Author(s):  
S D Seiwert ◽  
J A Steitz

To probe functions of the U1 small nuclear ribonucleoprotein particle (snRNP) during in vitro splicing, we have used unusual splicing substrates which replace the 5' splice site region of an adenovirus substrate with spliced leader (SL) RNA sequences from Leptomonas collosoma or Caenorhabditis elegans. In agreement with previous results (J.P. Bruzik and J.A. Steitz, Cell 62:889-899, 1990), we find that oligonucleotide-targeted RNase H destruction of the 5' end of U1 snRNA inhibits the splicing of a standard adenovirus splicing substrate but not of the SL RNA-containing substrates. However, use of an antisense 2'-O-methyl oligoribonucleotide that disrupts the first stem of U1 snRNA as well as stably sequestering positions of U1 snRNA involved in 5' and 3' splice site recognition inhibits the splicing of both the SL constructs and the standard adenovirus substrate. The 2'-O-methyl oligoribonucleotide is no more effective than RNase H pretreatment in preventing pairing of U1 with the 5' splice site, as assessed by inhibition of psoralen cross-link formation between the SL RNA-containing substrate and U1. The 2'-O-methyl oligoribonucleotide does not alter the protein composition of the U1 monoparticle or deplete the system of essential splicing factors. Native gel analysis indicates that the 2'-O-methyl oligoribonucleotide inhibits splicing by diminishing the formation of splicing complexes. One interpretation of these results is that removal of the 5' end of U1 inhibits base pairing in a different way than sequestering the same sequence with a complementary oligoribonucleotide. Alternatively, our data may indicate that two elements near the 5' end of U1 RNA normally act during spliceosome assembly; the extreme 5' end base pairs with the 5' splice site, while the sequence or structural integrity of stem I is essential for some additional function. It follows that different introns may differ in their use of the repertoire of U1 snRNP functions.


Nature ◽  
10.1038/43694 ◽  
1999 ◽  
Vol 401 (6749) ◽  
pp. 177-180 ◽  
Author(s):  
Anita G. Seto ◽  
Arthur J. Zaug ◽  
Suzanne G. Sobel ◽  
Sandra L. Wolin ◽  
Thomas R. Cech

1993 ◽  
Vol 13 (6) ◽  
pp. 3135-3145 ◽  
Author(s):  
S D Seiwert ◽  
J A Steitz

To probe functions of the U1 small nuclear ribonucleoprotein particle (snRNP) during in vitro splicing, we have used unusual splicing substrates which replace the 5' splice site region of an adenovirus substrate with spliced leader (SL) RNA sequences from Leptomonas collosoma or Caenorhabditis elegans. In agreement with previous results (J.P. Bruzik and J.A. Steitz, Cell 62:889-899, 1990), we find that oligonucleotide-targeted RNase H destruction of the 5' end of U1 snRNA inhibits the splicing of a standard adenovirus splicing substrate but not of the SL RNA-containing substrates. However, use of an antisense 2'-O-methyl oligoribonucleotide that disrupts the first stem of U1 snRNA as well as stably sequestering positions of U1 snRNA involved in 5' and 3' splice site recognition inhibits the splicing of both the SL constructs and the standard adenovirus substrate. The 2'-O-methyl oligoribonucleotide is no more effective than RNase H pretreatment in preventing pairing of U1 with the 5' splice site, as assessed by inhibition of psoralen cross-link formation between the SL RNA-containing substrate and U1. The 2'-O-methyl oligoribonucleotide does not alter the protein composition of the U1 monoparticle or deplete the system of essential splicing factors. Native gel analysis indicates that the 2'-O-methyl oligoribonucleotide inhibits splicing by diminishing the formation of splicing complexes. One interpretation of these results is that removal of the 5' end of U1 inhibits base pairing in a different way than sequestering the same sequence with a complementary oligoribonucleotide. Alternatively, our data may indicate that two elements near the 5' end of U1 RNA normally act during spliceosome assembly; the extreme 5' end base pairs with the 5' splice site, while the sequence or structural integrity of stem I is essential for some additional function. It follows that different introns may differ in their use of the repertoire of U1 snRNP functions.


Nature ◽  
10.1038/47284 ◽  
1999 ◽  
Vol 402 (6764) ◽  
pp. 898-898 ◽  
Author(s):  
Anita G. Seto ◽  
Arthur J. Zaug ◽  
Suzanne G. Sobel ◽  
Sandra L. Wolin ◽  
Thomas R. Cech

1990 ◽  
Vol 10 (9) ◽  
pp. 4480-4485
Author(s):  
J Andersen ◽  
R J Feeney ◽  
G W Zieve

The addition of urea to sodium dodecyl sulfate (SDS)-polyacrylamide gels has allowed the identification and characterization of the small nuclear ribonucleoprotein particle (snRNP) D' protein and has also improved resolution of the E, F, and G snRNP core proteins. In standard SDS-polyacrylamide gels, the D' and D snRNP core proteins comigrate at approximately 16 kilodaltons. The addition of urea to the separating gel caused the D' protein to shift to a slower electrophoretic mobility that is distinct from that of the D protein. The shift to a slower electrophoretic mobility in the presence of urea suggests that the D' protein has extensive secondary structure that is not totally disrupted by SDS alone. Both N-terminal sequencing and partial peptide maps indicate that the D and D' proteins are distinct gene products, and the sequence data have identified the faster moving of the two proteins as the previously cloned D protein (L. A. Rokeach, J. A. Haselby, and S. O. Hoch, Proc. Natl. Acad. Sci. USA 85:4832-4836, 1988). In the cytoplasm, the D protein is found primarily in the small-nuclear-RNA-free 6S protein complexes, while the D' protein is found primarily in the 20S protein complexes. Like the D protein, the D' protein is an autoantigen in patients with systemic lupus erythematosus and is recognized by some of the Sm class of autoimmune antisera.


1989 ◽  
Vol 9 (9) ◽  
pp. 3710-3719
Author(s):  
J Banroques ◽  
J N Abelson

The Saccharomyces cerevisiae prp mutants (prp2 through prp11) are known to be defective in pre-mRNA splicing at nonpermissive temperatures. We have sequenced the PRP4 gene and shown that it encodes a 52-kilodalton protein. We obtained PRP4 protein-specific antibodies and found that they inhibited in vitro pre-mRNA splicing, which confirms the essential role of PRP4 in splicing. Moreover, we found that PRP4 is required early in the spliceosome assembly pathway. Immunoprecipitation experiments with anti-PRP4 antibodies were used to demonstrate that PRP4 is a protein of the U4/U6 small nuclear ribonucleoprotein particle (snRNP). Furthermore, the U5 snRNP could be immunoprecipitated through snRNP-snRNP interactions in the large U4/U5/U6 complex.


Sign in / Sign up

Export Citation Format

Share Document