scholarly journals The species-specific RNA polymerase I transcription factor SL-1 binds to upstream binding factor.

1996 ◽  
Vol 16 (2) ◽  
pp. 557-563 ◽  
Author(s):  
W M Hempel ◽  
A H Cavanaugh ◽  
R D Hannan ◽  
L Taylor ◽  
L I Rothblum

Transcription of the 45S rRNA genes is carried out by RNA polymerase I and at least two trans-acting factors, upstream binding factor (UBF) and SL-1. We have examined the hypothesis that SL-1 and UBF interact. Coimmunoprecipitation studies using an antibody to UBF demonstrated that TATA-binding protein, a subunit of SL-1, associates with UBF in the absence of DNA. Inclusion of the detergents sodium dodecyl sulfate and deoxycholate disrupted this interaction. In addition, partially purified UBF from rat cell nuclear extracts and partially purified SL-1 from human cells coimmunoprecipitated with the anti-UBF antibody after mixing, indicating that the UBF-SL-1 complex can re-form. Treatment of UBF-depleted extracts with the anti-UBF antibody depleted the extracts of SL-1 activity only if UBF was added to the extract prior to the immunodepletion reaction. Furthermore, SL-1 activity could be recovered in the immunoprecipitate. Interestingly, these immunoprecipitates did not contain RNA polymerase I, as a monospecific antibody to the 194-kDa subunit of RNA polymerase I failed to detect that subunit in the immunoprecipitates. Treatment of N1S1 cell extracts with the anti-UBF antibody depleted the extracts of SL-1 activity but not TFIIIB activity, suggesting that the binding of UBF to SL-1 is specific and not solely mediated by an interaction between UBF and TATA-binding protein, which is also a component of TFIIIB. These data provide evidence that UBF and SL-1 interact.

1996 ◽  
Vol 16 (10) ◽  
pp. 5572-5578 ◽  
Author(s):  
M Bodeker ◽  
C Cairns ◽  
B McStay

Initiation of RNA polymerase I transcription in Xenopus laevis requires Rib 1 and upstream binding factor (UBF). UBF and Rib 1 combine to form a stable transcription complex on the Xenopus ribosomal gene promoter. Here we show that Rib 1 comprises TATA-binding protein (TBP) and TBP-associated factor components. Thus, Rib 1 is the Xenopus equivalent of mammalian SL 1. In contrast to SL 1, Rib 1 is an unstable complex that readily dissociates into TBP and associated components. We identify a novel function for UBF in stabilizing Rib 1 by multiple protein interactions. This stabilization occurs in solution in a DNA-independent manner. These results may partially explain the difference in UBF requirement between Xenopus and mammalian systems.


1996 ◽  
Vol 133 (2) ◽  
pp. 225-234 ◽  
Author(s):  
P Jordan ◽  
M Mannervik ◽  
L Tora ◽  
M Carmo-Fonseca

Here we show that the TATA-binding protein (TBP) is localized in the nucleoplasm and in the nucleolus of mammalian cells, consistent with its known involvement in transcription by RNA polymerase I, II, and III. In the nucleolus of actively growing cells, TBP colocalizes with upstream binding factor (UBF) and RNA polymerase I at the sites of rRNA transcription. During mitosis, when rRNA synthesis is down-regulated, TBP colocalizes with TBP-associated factors for RNA polymerase I (TAF(I)s), UBF, and RNA polymerase I on the chromosomal regions containing the rRNA genes. Treatment of cells with a low concentration of actinomycin D inhibits rRNA synthesis and causes a redistribution of the rRNA genes that become concentrated in clusters at the periphery of the nucleolus. A similar redistribution was observed for the major components of the rRNA transcription machinery (i.e., TBP, TAF(I)s, UBF, and RNA polymerase I), which still colocalized with each other. Furthermore, anti-TBP antibodies are shown to coimmunoprecipitate TBP and TAF(I)63 in extracts prepared from untreated and actinomycin D-treated cells. Collectively, the data indicate that in vivo TBP/promoter selectivity factor, UBF, and RNA polymerase I remain associated with both active and inactive rRNA genes.


2007 ◽  
Vol 27 (13) ◽  
pp. 4938-4952 ◽  
Author(s):  
Shelley E. Brown ◽  
Moshe Szyf

ABSTRACT Within the human genome there are hundreds of copies of the rRNA gene, but only a fraction of these genes are active. Silencing through epigenetics has been extensively studied; however, it is essential to understand how active rRNA genes are maintained. Here, we propose a role for the methyl-CpG binding domain protein MBD3 in epigenetically maintaining active rRNA promoters. We show that MBD3 is localized to the nucleolus, colocalizes with upstream binding factor, and binds to unmethylated rRNA promoters. Knockdown of MBD3 by small interfering RNA results in increased methylation of the rRNA promoter coupled with a decrease in RNA polymerase I binding and pre-rRNA transcription. Conversely, overexpression of MBD3 results in decreased methylation of the rRNA promoter. Additionally, overexpression of MBD3 induces demethylation of nonreplicating plasmids containing the rRNA promoter. We demonstrate that this demethylation occurs following the overexpression of MBD3 and its increased interaction with the methylated rRNA promoter. This is the first demonstration that MBD3 is involved in inducing and maintaining the demethylated state of a specific promoter.


2001 ◽  
Vol 21 (7) ◽  
pp. 2292-2297 ◽  
Author(s):  
Imran Siddiqi ◽  
John Keener ◽  
Loan Vu ◽  
Masayasu Nomura

ABSTRACT Initiation of ribosomal DNA (rDNA) transcription by RNA polymerase I (Pol I) in the yeast Saccharomyces cerevisiae involves upstream activation factor (UAF), core factor, the TATA binding protein (TBP), and Rrn3p in addition to Pol I. We found previously that yeast strains carrying deletions in the UAF component RRN9switch completely to the use of Pol II for rRNA transcription, with no residual Pol I transcription. These polymerase-switched strains initially grow very slowly, but subsequent expansion in the number of rDNA repeats on chromosome XII leads to better growth. Recently, it was reported that TBP overexpression could bypass the requirement of UAF for Pol I transcription in vivo, producing nearly wild-type levels of growth in UAF mutant strains (P. Aprikian, B. Moorefield, and R. H. Reeder, Mol. Cell. Biol. 20:5269–5275, 2000). Here, we demonstrate that deletions in the UAF component RRN5,RRN9, or RRN10 lead to Pol II transcription of rDNA. TBP overexpression does not suppress UAF mutation, and these strains continue to use Pol II for rRNA transcription. We do not find evidence for even low levels of Pol I transcription in UAF mutant strains carrying overexpressed TBP. In diploid strains lacking both copies of the UAF componentRRN9, Pol II transcription of rDNA is more strongly repressed than in haploid strains but TBP overexpression still fails to activate Pol I. These results emphasize that UAF plays an essential role in activation of Pol I transcription and silencing of Pol II transcription of rDNA and that TBP functions to recruit the Pol I machinery in a manner completely dependent on UAF.


2005 ◽  
Vol 86 (8) ◽  
pp. 2315-2322 ◽  
Author(s):  
Rajeev Banerjee ◽  
Mary K. Weidman ◽  
Sonia Navarro ◽  
Lucio Comai ◽  
Asim Dasgupta

Soon after infection, poliovirus (PV) shuts off host-cell transcription, which is catalysed by all three cellular RNA polymerases. rRNA constitutes more than 50 % of all cellular RNA and is transcribed from rDNA by RNA polymerase I (pol I). Here, evidence has been provided suggesting that both pol I transcription factors, SL-1 (selectivity factor) and UBF (upstream binding factor), are modified and inactivated in PV-infected cells. The viral protease 3Cpro appeared to cleave the TATA-binding protein-associated factor 110 (TAF110), a subunit of the SL-1 complex, into four fragments in vitro. In vitro protease-cleavage assays using various mutants of TAF110 and purified 3Cpro indicated that the Q265G266 and Q805G806 sites were cleaved by 3Cpro. Both SL-1 and UBF were depleted in PV-infected cells and their disappearance correlated with pol I transcription inhibition. rRNA synthesis from a template containing a human pol I promoter demonstrated that both SL-1 and UBF were necessary to restore pol I transcription fully in PV-infected cell extracts. These results suggested that both SL-1 and UBF are transcriptionally inactivated in PV-infected HeLa cells.


2005 ◽  
Vol 280 (33) ◽  
pp. 29551-29558 ◽  
Author(s):  
J. Karsten Friedrich ◽  
Kostya I. Panov ◽  
Pavel Cabart ◽  
Jackie Russell ◽  
Joost C. B. M. Zomerdijk

1994 ◽  
Vol 14 (10) ◽  
pp. 6476-6488 ◽  
Author(s):  
C D Putnam ◽  
G P Copenhaver ◽  
M L Denton ◽  
C S Pikaard

Upstream binding factor (UBF) is an important transactivator of RNA polymerase I and is a member of a family of proteins that contain nucleic acid binding domains named high-mobility-group (HMG) boxes because of their similarity to HMG chromosomal proteins. UBF is a highly sequence-tolerant DNA-binding protein for which no binding consensus sequence has been identified. Therefore, it has been suggested that UBF may recognize preformed structural features of DNA, a hypothesis supported by UBF's ability to bind synthetic DNA cruciforms, four-way junctions, and even tRNA. We show here that full-length UBF can also bend linear DNA to mediate circularization of probes as small as 102 bp in the presence of DNA ligase. Longer probes in the presence of UBF become positively supercoiled when ligated, suggesting that UBF wraps the DNA in a right-handed direction, opposite the direction of DNA wrapping around a nucleosome. The dimerization domain and HMG box 1 are necessary and sufficient to circularize short probes and supercoil longer probes in the presence of DNA ligase. UBF's sequence tolerance coupled with its ability to bend and wrap DNA makes UBF an unusual eukaryotic transcription factor. However, UBF's ability to bend DNA might explain how upstream and downstream rRNA gene promoter domains interact. UBF-induced DNA wrapping could also be a mechanism by which UBF counteracts histone-mediated gene repression.


Sign in / Sign up

Export Citation Format

Share Document