tata binding protein
Recently Published Documents


TOTAL DOCUMENTS

561
(FIVE YEARS 18)

H-INDEX

72
(FIVE YEARS 3)

Author(s):  
Michael A. Clegg ◽  
Natalie H. Theodoulou ◽  
Paul Bamborough ◽  
Chun-wa Chung ◽  
Peter D. Craggs ◽  
...  

Author(s):  
Sakshi Singh ◽  
Rakesh Kumar Sahu ◽  
Raghuvir Singh Tomar

Copper homeostasis is crucial for cellular processes. The balance between nutritional and toxic level is maintained through the regulation of uptake, distribution and detoxification via antagonistic actions of two transcription factors AceI and Mac1. AceI responds to toxic copper levels by transcriptional regulation of detoxification genes CUP1 and CRS5. Cup1 metallothionein (MT) confers protection against toxic copper levels. CUP1 gene regulation is a multifactorial event requiring AceI, TBP (TATA-binding protein), chromatin remodeler, acetyltransferase (Spt10) and histones. However, the role of histone H3 residues has not been fully elucidated. To investigate the role of H3 tail in CUP1 transcriptional regulation, we screened the library of histone mutants in copper stress. We identified mutations in H3 (K23Q, K27R, K36Q, Δ5-16, Δ13-16, Δ13-28, Δ25-28, Δ28-31, Δ29-32) that reduce CUP1 expression. We detected reduced AceI occupancy across CUP1 promoter in K23Q, K36Q, Δ5-16, Δ13-28, Δ25-28 and Δ28-31 correlating with the reduced CUP1 transcription. Majority of these mutations affect TBP occupancy at CUP1 promoter augmenting the CUP1 transcription defect. Additionally, some mutants display cytosolic protein aggregation upon copper stress. Altogether, our data establish previously unidentified residues of H3 N-terminal tail and their modifications in CUP1 regulation.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1081 ◽  
Author(s):  
Yael Admoni ◽  
Itamar Kozlovski ◽  
Magda Lewandowska ◽  
Yehu Moran

Nematostella vectensis has emerged as one as the most established models of the phylum Cnidaria (sea anemones, corals, hydroids and jellyfish) for studying animal evolution. The availability of a reference genome and the relative ease of culturing and genetically manipulating this organism make it an attractive model for addressing questions regarding the evolution of venom, development, regeneration and other interesting understudied questions. We and others have previously reported the use of tissue-specific promoters for investigating the function of a tissue or a cell type of interest in vivo. However, to our knowledge, genetic regulators at the whole organism level have not been reported yet. Here we report the identification and utilization of a ubiquitous promoter to drive a wide and robust expression of the fluorescent protein mCherry. We generated animals containing a TATA binding protein (TBP) promoter upstream of the mCherry gene. Flow cytometry and fluorescent microscopy revealed expression of mCherry in diverse cell types, accounting for more than 90% of adult animal cells. Furthermore, we detected a stable mCherry expression at different life stages and throughout generations. This tool will expand the existing experimental toolbox to facilitate genetic engineering and functional studies at the whole organism level.


2020 ◽  
Vol 21 (3) ◽  
pp. 1045 ◽  
Author(s):  
Mikhail Ponomarenko ◽  
Dmitry Rasskazov ◽  
Irina Chadaeva ◽  
Ekaterina Sharypova ◽  
Irina Drachkova ◽  
...  

(1) Background: The World Health Organization (WHO) regards atherosclerosis-related myocardial infarction and stroke as the main causes of death in humans. Susceptibility to atherogenesis-associated diseases is caused by single-nucleotide polymorphisms (SNPs). (2) Methods: Using our previously developed public web-service SNP_TATA_Comparator, we estimated statistical significance of the SNP-caused alterations in TATA-binding protein (TBP) binding affinity for 70 bp proximal promoter regions of the human genes clinically associated with diseases syntonic or dystonic with atherogenesis. Additionally, we did the same for several genes related to the maintenance of mitochondrial genome integrity, according to present-day active research aimed at retarding atherogenesis. (3) Results: In dbSNP, we found 1186 SNPs altering such affinity to the same extent as clinical SNP markers do (as estimated). Particularly, clinical SNP marker rs2276109 can prevent autoimmune diseases via reduced TBP affinity for the human MMP12 gene promoter and therefore macrophage elastase deficiency, which is a well-known physiological marker of accelerated atherogenesis that could be retarded nutritionally using dairy fermented by lactobacilli. (4) Conclusions: Our results uncovered SNPs near clinical SNP markers as the basis of neutral drift accelerating atherogenesis and SNPs of genes encoding proteins related to mitochondrial genome integrity and microRNA genes associated with instability of the atherosclerotic plaque as a basis of directional natural selection slowing atherogenesis. Their sum may be stabilizing the natural selection that sets the normal level of atherogenesis.


2020 ◽  
Vol 23 (8) ◽  
pp. 1047-1058
Author(s):  
I. V. Chadaeva ◽  
D. A. Rasskazov ◽  
E. B. Sharypova ◽  
I. A. Drachkova ◽  
E. A. Oshchepkova ◽  
...  

Rheumatoid polyarthritis (RA) is an autoimmune disease with autoantibodies, including antibodies to citrullant antigens and proinflammatory cytokines, such as TNF-α and IL-6, which are involved in the induction of chronic synovitis, bone erosion, followed by deformity. Immunopathogenesis is based on the mechanisms of the breakdown of immune tolerance to its own antigens, which is characterized by an increase in the activity of T-effector cells, causing RA symptomatology. At the same time, against the background of such increased activity of effector lymphocytes, a decrease in the activity of a number of regulatory cells, including regulatory T-cells (Treg) and myeloid suppressor cells, is recorded. There is reason to say that it is the change in the activity of suppressor cells that is the leading element in RA pathogenesis. That is why only periods of weakening (remission) of RA are spoken of. According to the more powerful female immune system compared to the male one, the risk of developing RA in women is thrice as high, this risk decreases during breastfeeding and grows during pregnancy as well as after menopause in proportion to the level of sex hormones. It is believed that 50 % of the risk of developing RA depends on the conditions and lifestyle, while the remaining 50 % is dependent on genetic predisposition. That is why, RA fits the main idea of postgenomic predictive-preventive personalized medicine that is to give a chance to those who would like to reduce his/her risk of diseases by bringing his/her conditions and lifestyle in line with the data on his/her genome sequenced. This is very important, since doctors consider RA as one of the most frequent causes of disability. Using the Web service SNP_TATA_Z-tester (http://beehive.bionet.nsc.ru/cgi-bin/mgs/tatascan_fox/start.pl), 227 variants of single nucleotide polymorphism (SNP) of the human gene promoters were studied. As a result, 43 candidate SNP markers for RA that can alter the affinity of the TATA-binding protein (TBP) for the promoters of these genes were predicted.


Author(s):  
Yi-Fan Ruan ◽  
Xiao-Mei Shi ◽  
Hai-Yan Wang ◽  
Wei-Wei Zhao ◽  
Jing-Juan Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document