Transcription factor binding is limited by the 5'-flanking regions of a Drosophila tRNAHis gene and a tRNAHis pseudogene

1984 ◽  
Vol 4 (12) ◽  
pp. 2714-2722
Author(s):  
L Cooley ◽  
J Schaack ◽  
D J Burke ◽  
B Thomas ◽  
D Söll

We determined the sequence of a Drosophila tRNA gene cluster containing a tRNAHis gene and a tRNAHis pseudogene in close proximity on the same DNA strand. The pseudogene contains eight consecutive base pairs different from the region of the bona fide gene which codes for the 3' portion of the anticodon stem of tRNAHis. The tRNAHis gene is transcribed efficiently in Drosophila Kc cell extract, whereas the pseudogene is not. The pseudogene is also a much poorer competitor than the real gene in a stable transcription complex formation assay, even though the sequence alteration in the pseudogene does not affect the sequence or spacing of the putative internal transcription control regions. Recombinant clones were constructed in which the 5'-flanking regions are exchanged. The transcription efficiencies and competitive abilities of the recombinant clones resemble those of the genes from which the 5' flank was derived; for example, the tRNAHis pseudogene with the 5'-flanking sequence of the tRNAHis gene is now efficiently transcribed. Deletion analysis of the pseudogene 5' flank failed to uncover an inhibitory element. Deletion analysis of the real gene showed very high dependence on the presence of the wild-type 5'-flanking sequence for factor binding to the internal control regions and stable complex formation. The 5'-flanking sequence of a Drosophila tRNAArg gene active in the Drosophila Kc cell extract does not restore transcriptional activity or stable complex formation. The tRNAHis gene and pseudogene behave atypically in HeLa cell extract. Both genes compete for HeLa transcription factors, but neither of them is efficiently transcribed. Removal of the 5'-flanking sequences of each gene and replacement with various sequences, including the tRNAArg gene 5' flank, does not allow increased transcription in HeLa cell extract.

1984 ◽  
Vol 4 (12) ◽  
pp. 2714-2722 ◽  
Author(s):  
L Cooley ◽  
J Schaack ◽  
D J Burke ◽  
B Thomas ◽  
D Söll

We determined the sequence of a Drosophila tRNA gene cluster containing a tRNAHis gene and a tRNAHis pseudogene in close proximity on the same DNA strand. The pseudogene contains eight consecutive base pairs different from the region of the bona fide gene which codes for the 3' portion of the anticodon stem of tRNAHis. The tRNAHis gene is transcribed efficiently in Drosophila Kc cell extract, whereas the pseudogene is not. The pseudogene is also a much poorer competitor than the real gene in a stable transcription complex formation assay, even though the sequence alteration in the pseudogene does not affect the sequence or spacing of the putative internal transcription control regions. Recombinant clones were constructed in which the 5'-flanking regions are exchanged. The transcription efficiencies and competitive abilities of the recombinant clones resemble those of the genes from which the 5' flank was derived; for example, the tRNAHis pseudogene with the 5'-flanking sequence of the tRNAHis gene is now efficiently transcribed. Deletion analysis of the pseudogene 5' flank failed to uncover an inhibitory element. Deletion analysis of the real gene showed very high dependence on the presence of the wild-type 5'-flanking sequence for factor binding to the internal control regions and stable complex formation. The 5'-flanking sequence of a Drosophila tRNAArg gene active in the Drosophila Kc cell extract does not restore transcriptional activity or stable complex formation. The tRNAHis gene and pseudogene behave atypically in HeLa cell extract. Both genes compete for HeLa transcription factors, but neither of them is efficiently transcribed. Removal of the 5'-flanking sequences of each gene and replacement with various sequences, including the tRNAArg gene 5' flank, does not allow increased transcription in HeLa cell extract.


1997 ◽  
Vol 110 (17) ◽  
pp. 2013-2025 ◽  
Author(s):  
L. Renzi ◽  
M.S. Gersch ◽  
M.S. Campbell ◽  
L. Wu ◽  
S.A. Osmani ◽  
...  

The MPM-2 antibody labels mitosis-specific and cell cycle-regulated phosphoproteins. The major phosphoproteins of mitotic chromosomes recognized by the MPM-2 antibody are DNA topoisomerase II (topoII) alpha and beta. In immunofluorescence studies of PtK1 cytoskeletons, prepared by detergent lysis in the presence of potent phosphatase inhibitors, the MPM-2 antibody labels phosphoproteins found at kinetochores, chromosome arms, midbody and spindle poles of mitotic cells. In cells extracted without phosphatase inhibitors, labeling of the MPM-2 antibodies at kinetochores is greatly diminished. However, in cytoskeletons this epitope can be regenerated through the action of kinases stably bound at the kinetochore. Various kinase inhibitors were tested in order to characterize the endogenous kinase responsible for these phosphorylations. We found that the MPM-2 epitope will not rephosphorylate in the presence of the broad specificity kinase inhibitors K-252a, staurosporine and 2-aminopurine. Several other inhibitors had no effect on the rephosphorylation indicating that the endogenous MPM-2 kinase at kinetochores is not p34cdc2, casein kinase II, MAP kinase, protein kinase A or protein kinase C. The addition of N-ethylmaleimide inactivated the endogenous kinetochore kinase; this allowed testing of several purified kinases in the kinetochore rephosphorylation assay. Active p34cdc2-cyclin B, casein kinase II and MAP kinase could not generate the MPM-2 phosphoepitope. However, bacterially expressed NIMA from Aspergillus and ultracentrifuged mitotic HeLa cell extract were able to catalyze the rephosphorylation of the MPM-2 epitope at kinetochores. Furthermore, fractionation of mitotic HeLa cell extract showed that kinases that create the MPM-2 epitope at kinetochores and chromosome arms are distinct. Our results suggest that multiple kinases (either soluble or kinetochore-bound), including a homolog of mammalian NIMA, can create the MPM-2 phosphoepitope. The kinetochore-bound kinase that catalyzes the formation of the MPM-2 phosphoepitope may play an important role in key events such as mitotic kinetochore assembly and sister chromatid separation at anaphase.


1983 ◽  
Vol 11 (5) ◽  
pp. 1405-1418 ◽  
Author(s):  
W. Filipowicz ◽  
M. Konarska ◽  
H. J. Gross ◽  
A. J. Shatkin

1984 ◽  
Vol 12 (23) ◽  
pp. 8971-8985 ◽  
Author(s):  
Edgar Wingender ◽  
Dagmar Dilloo ◽  
Klaus H. Seifart

1981 ◽  
Vol 78 (10) ◽  
pp. 5963-5967 ◽  
Author(s):  
D. N. Standring ◽  
A. Venegas ◽  
W. J. Rutter

1982 ◽  
Vol 44 (3) ◽  
pp. 772-781 ◽  
Author(s):  
J N Brady ◽  
M Radonovich ◽  
N P Salzman

1996 ◽  
Vol 32 (3) ◽  
pp. 549-552 ◽  
Author(s):  
Carsten Urban ◽  
Kathleen N. Smith ◽  
Hildburg Beier

Sign in / Sign up

Export Citation Format

Share Document