Functional simian virus 40 T antigen is expressed in hybrid cells having finite proliferative potential

1987 ◽  
Vol 7 (4) ◽  
pp. 1541-1544
Author(s):  
O M Pereira-Smith ◽  
J R Smith

Simian virus 40-transformed human cells fused with other independently derived simian virus 40-transformed cells and tumor-derived cells containing activated H-ras and N-ras oncogenes yielded hybrids capable of indefinite division. Fusions with various other immortal cells yielded hybrids that had limited division potential. T antigen expressed in limited-division hybrids was functional for the induction of cellular DNA synthesis.

1987 ◽  
Vol 7 (4) ◽  
pp. 1541-1544 ◽  
Author(s):  
O M Pereira-Smith ◽  
J R Smith

Simian virus 40-transformed human cells fused with other independently derived simian virus 40-transformed cells and tumor-derived cells containing activated H-ras and N-ras oncogenes yielded hybrids capable of indefinite division. Fusions with various other immortal cells yielded hybrids that had limited division potential. T antigen expressed in limited-division hybrids was functional for the induction of cellular DNA synthesis.


1983 ◽  
Vol 3 (2) ◽  
pp. 214-219
Author(s):  
K J Soprano ◽  
N Galanti ◽  
G J Jonak ◽  
S McKercher ◽  
J M Pipas ◽  
...  

The biological activity of several deletion mutants of simian virus 40, cloned in pBR322, was determined. Three functions of the simian virus 40 A gene were studied: (i) the ability to express T antigen; (ii) the ability to induce cell DNA replication; and (iii) the ability to reactivate silent rRNA genes in hybrid cells. Recombinant plasmid DNA was introduced into cells by manual microinjection or by transfection. The results (together with previous reports) indicate that the critical sequences for these three functions are located separately on the simian virus 40 A gene, as follows: (i) the sequences necessary for the detection of the common antigenic determinant of T antigen extend from nucleotide 4147 to nucleotide 4001 (map units 0.45 to 0.42); (ii) the sequences critical for the stimulation of cell DNA synthesis extend from nucleotide 4327 to nucleotide 4001 (map units 0.49 to 0.42); and (iii) those critical for the reactivation of rRNA genes extend approximately from nucleotide 3827 to nucleotide 3526 (map units 0.39 to 0.33).


1983 ◽  
Vol 3 (2) ◽  
pp. 214-219 ◽  
Author(s):  
K J Soprano ◽  
N Galanti ◽  
G J Jonak ◽  
S McKercher ◽  
J M Pipas ◽  
...  

The biological activity of several deletion mutants of simian virus 40, cloned in pBR322, was determined. Three functions of the simian virus 40 A gene were studied: (i) the ability to express T antigen; (ii) the ability to induce cell DNA replication; and (iii) the ability to reactivate silent rRNA genes in hybrid cells. Recombinant plasmid DNA was introduced into cells by manual microinjection or by transfection. The results (together with previous reports) indicate that the critical sequences for these three functions are located separately on the simian virus 40 A gene, as follows: (i) the sequences necessary for the detection of the common antigenic determinant of T antigen extend from nucleotide 4147 to nucleotide 4001 (map units 0.45 to 0.42); (ii) the sequences critical for the stimulation of cell DNA synthesis extend from nucleotide 4327 to nucleotide 4001 (map units 0.49 to 0.42); and (iii) those critical for the reactivation of rRNA genes extend approximately from nucleotide 3827 to nucleotide 3526 (map units 0.39 to 0.33).


1989 ◽  
Vol 9 (7) ◽  
pp. 3088-3092 ◽  
Author(s):  
W E Wright ◽  
O M Pereira-Smith ◽  
J W Shay

IMR-90 normal human diploid fibroblasts, transfected with a steroid inducible mouse mammary tumor virus-driven simian virus 40 T antigen, were carried through crisis to yield an immortal cell line. Growth was dependent on the presence of the inducer (dexamethasone) during both the extended precrisis life span of the cells and after immortalization. After dexamethasone removal, immortal cells divided once or twice and then accumulated in G1. These results are best explained by a two-stage model for cellular senescence. Mortality stage 1 (M1) causes a loss of mitogen responsiveness and arrest near the G1/S interface and can be bypassed or overcome by the cellular DNA synthesis-stimulating activity of T antigen. Mortality stage 2 (M2) is an independent mechanism that is responsible for the failure of cell division during crisis. The inactivation of M2 is a rare event, probably of mutational origin in human cells, independent of or only indirectly related to the expression of T antigen. Under this hypothesis, T-antigen-immortalized cells contain an active but bypassed M1 mechanism and an inactivated M2 mechanism. These cells are dependent on the continued expression of T antigen for the maintenance of immortality for the same reason that precrisis cells are dependent on T antigen for growth: both contain an active M1 mechanism.


1985 ◽  
Vol 5 (6) ◽  
pp. 1531-1533 ◽  
Author(s):  
R E Lanford ◽  
J K Hyland ◽  
R Baserga ◽  
J S Butel

The simian virus 40 (SV40) (cT)-3 mutant [SV40(cT)-3], which is defective in nuclear transport of T antigen, was utilized to determine whether cellular DNA synthesis can be stimulated by SV40 in the absence of detectable nuclear T antigen. Cellular DNA synthesis was examined in the temperature-sensitive cell cycle mutants, BHK ts13 and BHK tsAF8, after microinjection of quiescent cells with plasmid DNA containing cloned copies of wild-type SV40 or SV40(cT)-3. The efficiency of induction of cellular DNA synthesis was identical for both wild-type SV40 and SV40(cT)-3 in both cell lines. The results suggest that cell surface-associated T antigen, either alone or possibly in combination with minimal amounts of nuclear T antigen below our limit of detection, is able to stimulate cellular DNA synthesis.


1989 ◽  
Vol 9 (7) ◽  
pp. 3088-3092
Author(s):  
W E Wright ◽  
O M Pereira-Smith ◽  
J W Shay

IMR-90 normal human diploid fibroblasts, transfected with a steroid inducible mouse mammary tumor virus-driven simian virus 40 T antigen, were carried through crisis to yield an immortal cell line. Growth was dependent on the presence of the inducer (dexamethasone) during both the extended precrisis life span of the cells and after immortalization. After dexamethasone removal, immortal cells divided once or twice and then accumulated in G1. These results are best explained by a two-stage model for cellular senescence. Mortality stage 1 (M1) causes a loss of mitogen responsiveness and arrest near the G1/S interface and can be bypassed or overcome by the cellular DNA synthesis-stimulating activity of T antigen. Mortality stage 2 (M2) is an independent mechanism that is responsible for the failure of cell division during crisis. The inactivation of M2 is a rare event, probably of mutational origin in human cells, independent of or only indirectly related to the expression of T antigen. Under this hypothesis, T-antigen-immortalized cells contain an active but bypassed M1 mechanism and an inactivated M2 mechanism. These cells are dependent on the continued expression of T antigen for the maintenance of immortality for the same reason that precrisis cells are dependent on T antigen for growth: both contain an active M1 mechanism.


1985 ◽  
Vol 5 (6) ◽  
pp. 1531-1533
Author(s):  
R E Lanford ◽  
J K Hyland ◽  
R Baserga ◽  
J S Butel

The simian virus 40 (SV40) (cT)-3 mutant [SV40(cT)-3], which is defective in nuclear transport of T antigen, was utilized to determine whether cellular DNA synthesis can be stimulated by SV40 in the absence of detectable nuclear T antigen. Cellular DNA synthesis was examined in the temperature-sensitive cell cycle mutants, BHK ts13 and BHK tsAF8, after microinjection of quiescent cells with plasmid DNA containing cloned copies of wild-type SV40 or SV40(cT)-3. The efficiency of induction of cellular DNA synthesis was identical for both wild-type SV40 and SV40(cT)-3 in both cell lines. The results suggest that cell surface-associated T antigen, either alone or possibly in combination with minimal amounts of nuclear T antigen below our limit of detection, is able to stimulate cellular DNA synthesis.


1984 ◽  
Vol 4 (8) ◽  
pp. 1476-1482
Author(s):  
H Ariga

The replicating activity of several cloned DNAs containing putative origin sequences was examined in a cell-free extract that absolutely depends on simian virus 40 (SV40) T antigen promoting initiation of SV40 DNA replication in vitro. Of the three DNAs containing the human Alu family sequence (BLUR8), the origin of (Saccharomyces cerevisiae plasmid 2 micron DNA (pJD29), and the yeast autonomous replicating sequence (YRp7), only BLUR8 was active as a template. Replication in a reaction mixture with BLUR8 as a template was semiconservative and not primed by a putative RNA polymerase III transcript synthesized on the Alu family sequence in vitro. Pulse-chase experiments showed that the small-sized DNA produced in a short-term incubation was converted to full-length closed circular and open circular DNAs in alkaline sucrose gradients. DNA synthesis in extracts began in a region of the Alu family sequence and was inhibited 80% by the addition of anti-T serum. Furthermore, partially purified T antigen bound the Alu family sequence in BLUR8 by the DNA-binding immunoassay. These results suggest that SV40 T antigen recognizes the Alu family sequence, similar to the origin sequence of SV40 DNA, and initiates semiconservative DNA replication in vitro.


1984 ◽  
Vol 4 (12) ◽  
pp. 2631-2638 ◽  
Author(s):  
P J Wright ◽  
A L DeLucia ◽  
P Tegtmeyer

The simian virus 40 A protein (T antigen) recognized and bound to the consensus sequence 5'-GAGGC-3' in DNA from many sources. Sequence-specific binding to single pentanucleotides in randomly chosen DNA predominated over binding to nonspecific sequences. The asymmetric orientation of protein bound to nonorigin recognition sequences also resembled that of protein bound to the origin region of simian virus 40 DNA. Sequence variations in the DNA adjacent to single pentanucleotides influenced binding affinities even though methylation interference and protection studies did not reveal specific interactions outside of pentanucleotides. Thus, potential locations of A protein bound to any DNA can be predicted although the determinants of binding affinity are not yet understood. Sequence-specific binding of A protein to cellular DNA would provide a mechanism for specific alterations of host gene expression that facilitate viral function.


Sign in / Sign up

Export Citation Format

Share Document