Identification of a complex associated with processing and polyadenylation in vitro of herpes simplex virus type 1 thymidine kinase precursor RNA

1987 ◽  
Vol 7 (9) ◽  
pp. 3277-3286
Author(s):  
F Zhang ◽  
C N Cole

Cleavage and polyadenylation of substrate RNAs containing the herpes simplex virus type 1 (HSV-1) thymidine kinase (tk) gene polyadenylation signal region were examined in HeLa cell nuclear extract. 3'-End RNA processing was accurate and efficient and required ATP and Mg2+. Cleavage, but not polyadenylation, occurred in the presence of EDTA or when ATP was replaced with 3' dATP (cordycepin) or AMP(CH2)PP, a nonhydrolyzable analog of ATP. Processing in vitro and in vivo showed the same signal element requirements: a series of substrates containing linker scanning, internal deletion, and small insertion mutations was processed with the same relative efficiencies and at the same sites in vitro and in vivo. A complex involved in 3'-end RNA processing was identified by gel mobility shift analysis. This complex formed rapidly, reached a maximum level after 20 to 30 min, and was much reduced after 2 h. Very little complex was formed at 0 degree C or with substrates lacking a polyadenylation signal. Entry of 32P-labeled tk substrate into the complex could be prevented by addition of excess 35S-labeled tk or adenovirus L3 precursor RNAs. Competition was not observed with tk RNAs lacking a complete polyadenylation signal.

1987 ◽  
Vol 7 (9) ◽  
pp. 3277-3286 ◽  
Author(s):  
F Zhang ◽  
C N Cole

Cleavage and polyadenylation of substrate RNAs containing the herpes simplex virus type 1 (HSV-1) thymidine kinase (tk) gene polyadenylation signal region were examined in HeLa cell nuclear extract. 3'-End RNA processing was accurate and efficient and required ATP and Mg2+. Cleavage, but not polyadenylation, occurred in the presence of EDTA or when ATP was replaced with 3' dATP (cordycepin) or AMP(CH2)PP, a nonhydrolyzable analog of ATP. Processing in vitro and in vivo showed the same signal element requirements: a series of substrates containing linker scanning, internal deletion, and small insertion mutations was processed with the same relative efficiencies and at the same sites in vitro and in vivo. A complex involved in 3'-end RNA processing was identified by gel mobility shift analysis. This complex formed rapidly, reached a maximum level after 20 to 30 min, and was much reduced after 2 h. Very little complex was formed at 0 degree C or with substrates lacking a polyadenylation signal. Entry of 32P-labeled tk substrate into the complex could be prevented by addition of excess 35S-labeled tk or adenovirus L3 precursor RNAs. Competition was not observed with tk RNAs lacking a complete polyadenylation signal.


1991 ◽  
Vol 65 (12) ◽  
pp. 6989-6993 ◽  
Author(s):  
M D Trousdale ◽  
I Steiner ◽  
J G Spivack ◽  
S L Deshmane ◽  
S M Brown ◽  
...  

1995 ◽  
Vol 39 (4) ◽  
pp. 846-849 ◽  
Author(s):  
H Aoki ◽  
T Akaike ◽  
K Abe ◽  
M Kuroda ◽  
S Arai ◽  
...  

Oryzacystatin (OC) is the first-described cystatin originating from rice seed; it consists of two molecular species, OC-I and OC-II, which have antiviral action against poliovirus in vitro (H. Kondo, S. Ijiri, K. Abe, H. Maeda, and S. Arai, FEBS Lett. 299:48-50, 1992). In the experiments reported here, we investigated the effects of OC-I and OC-II on the replication of herpes simplex virus type 1 (HSV-1) in vitro and in vivo. HSV-1 was inoculated onto monolayers of monkey kidney epithelial cells (CV-1 cells) at a multiplicity of infection of 0.1 PFU per cell. After adsorption of the virus onto cells, the cultures were incubated in the presence of either OC-I or OC-II in the concentration range of 1.0 to 300 microM, and the supernatant virus yield was quantitated at 24 h. The effective concentration for 90% inhibition of HSV-1 was 14.8 microM, while a cytotoxic effect on CV-1 cells without infection of HSV-1 was not observed below 500 microM OC-I. Therefore, the apparent in vitro chemotherapeutic index was estimated to be more than 33. In the mouse model of HSV-1-induced keratitis and encephalopathy, topical administration of OC-I to the mouse cornea produced a significant decrease in virus production in the cornea (mean virus yields: 3.11 log10 PFU in the treated group and 4.37 log10 PFU in the control group) and significant improvement in survival rates (P = 0.01). The in vivo antiherpetic effect of OC-I was comparable to that of acyclovir, indicating that topical treatment of HSV-1 infection in humans with OC-I might be possible. Our data also suggest the importance of some thiol proteinases, which may be derived from either the host's cells or HSV-1, during the replication process of HSV-1.


2000 ◽  
Vol 74 (8) ◽  
pp. 3613-3622 ◽  
Author(s):  
Herve Berthomme ◽  
James Lokensgard ◽  
Li Yang ◽  
Todd Margolis ◽  
Lawrence T. Feldman

ABSTRACT Herpes simplex virus type 1 (HSV-1) latent infection in vivo is characterized by the constitutive expression of the latency-associated transcripts (LAT), which originate from the LAT promoter (LAP). In an attempt to determine the functional parts of LAP, we previously demonstrated that viruses harboring a DNA fragment 3′ of the LAT promoter itself were able to maintain detectable promoter expression throughout latency whereas viruses not containing this element could not (J. R. Lokensgard, H. Berthomme, and L. T. Feldman, J. Virol. 71:6714–6719, 1997). This element was therefore called a long-term expression element (LTE). To further study the role of the LTE, we constructed plasmids containing a DNA fragment encompassing the LTE inserted into a synthetic intron between the reporterlacZ gene and either the LAT or the HSV-1 thymidine kinase promoter. Transient-expression experiments with both neuronal and nonneuronal cell lines showed that the LTE locus has an enhancer activity that does not activate the cytomegalovirus enhancer but does activate the promoters such as the LAT promoter and the thymidine kinase promoter. The enhancement of these two promoters occurs in both neuronal and nonneuronal cell lines. Recombinant viruses containing enhancer constructs were constructed, and these demonstrated that the enhancer functioned when present in the context of the viral DNA, both for in vitro infections of cells in culture and for in vivo infections of neurons in mouse dorsal root ganglia. In the infections of mouse dorsal root ganglia, there was a very high level of promoter activity in neurons infected with viruses bearing the LAT promoter-enhancer, but this decreased after the first 2 or 3 weeks. By 18 days postinfection, neurons harboring latent virus without the enhancer showed no β-galactosidase (β-gal) staining whereas those harboring latent virus containing the enhancer continued to show β-gal staining for long periods, extending to at least 6 months postinfection, the longest time examined.


2001 ◽  
Vol 8 (4) ◽  
pp. 269-277 ◽  
Author(s):  
Ken Samoto ◽  
Guey-Chuen Perng ◽  
Moneeb Ehtesham ◽  
Yunhui Liu ◽  
Steven L Wechsler ◽  
...  

2002 ◽  
Vol 76 (22) ◽  
pp. 11541-11550 ◽  
Author(s):  
Bruno Sainz ◽  
William P. Halford

ABSTRACT In vivo evidence suggests that T-cell-derived gamma interferon (IFN-γ) can directly inhibit the replication of herpes simplex virus type 1 (HSV-1). However, IFN-γ is a weak inhibitor of HSV-1 replication in vitro. We have found that IFN-γ synergizes with the innate IFNs (IFN-α and -β) to potently inhibit HSV-1 replication in vitro and in vivo. Treatment of Vero cells with either IFN-β or IFN-γ inhibits HSV-1 replication by <20-fold, whereas treatment with both IFN-β and IFN-γ inhibits HSV-1 replication by ∼1,000-fold. Treatment with IFN-β and IFN-γ does not prevent HSV-1 entry into Vero cells, and the inhibitory effect can be overcome by increasing the multiplicity of HSV-1 infection. The capacity of IFN-β and IFN-γ to synergistically inhibit HSV-1 replication is not virus strain specific and has been observed in three different cell types. For two of the three virus strains tested, IFN-β and IFN-γ inhibit HSV-1 replication with a potency that approaches that achieved by a high dose of acyclovir. Pretreatment of mouse eyes with IFN-β and IFN-γ reduces HSV-1 replication to nearly undetectable levels, prevents the development of disease, and reduces the latent HSV-1 genome load per trigeminal ganglion by ∼200-fold. Thus, simultaneous activation of IFN-α/β receptors and IFN-γ receptors appears to render cells highly resistant to the replication of HSV-1. Because IFN-α or IFN-β is produced by most cells as an innate response to virus infection, the results imply that IFN-γ secreted by T cells may provide a critical second signal that potently inhibits HSV-1 replication in vivo.


Sign in / Sign up

Export Citation Format

Share Document