scholarly journals A silencer element from the alpha-globin gene inhibits expression of beta-like genes.

1988 ◽  
Vol 8 (11) ◽  
pp. 5047-5051 ◽  
Author(s):  
G F Atweh ◽  
J M Liu ◽  
H E Brickner ◽  
X X Zhu

We have studied the cis and trans interactions of the alpha- and beta-globin genes in a transient expression system. We found that the alpha-globin gene inhibited beta-globin expression in cis but not in trans. The silencer element responsible for this inhibition was localized to a 259-base-pair fragment at the 5' end of the alpha-globin gene.

1988 ◽  
Vol 8 (11) ◽  
pp. 5047-5051
Author(s):  
G F Atweh ◽  
J M Liu ◽  
H E Brickner ◽  
X X Zhu

We have studied the cis and trans interactions of the alpha- and beta-globin genes in a transient expression system. We found that the alpha-globin gene inhibited beta-globin expression in cis but not in trans. The silencer element responsible for this inhibition was localized to a 259-base-pair fragment at the 5' end of the alpha-globin gene.


1991 ◽  
Vol 11 (7) ◽  
pp. 3786-3794 ◽  
Author(s):  
M Albitar ◽  
M Katsumata ◽  
S A Liebhaber

Recent studies have demonstrated that transcriptional activation of the human adult beta-globin transgene in mice by coinsertion of the beta-globin cluster locus control region (beta-LCR) results in loss of its adult restricted pattern of expression. Normal developmental control is reestablished by coinsertion of the fetal gamma-globin transgene in cis to the adult beta-globin gene. To test the generality of this interdependence of two globin genes for their proper developmental control, we generated transgenic mice in which the human adult alpha-globin genes are transcriptionally activated by the beta-LCR either alone or in cis to their corresponding embryonic zeta-globin gene. In both cases, the human globin transgenes were expressed at the appropriate developmental period. In contrast to the beta-globin gene, developmental control of the human adult alpha-globin transgenes appears to be autonomous and maintained even when activated by an adjacent locus control region.


1991 ◽  
Vol 11 (7) ◽  
pp. 3786-3794
Author(s):  
M Albitar ◽  
M Katsumata ◽  
S A Liebhaber

Recent studies have demonstrated that transcriptional activation of the human adult beta-globin transgene in mice by coinsertion of the beta-globin cluster locus control region (beta-LCR) results in loss of its adult restricted pattern of expression. Normal developmental control is reestablished by coinsertion of the fetal gamma-globin transgene in cis to the adult beta-globin gene. To test the generality of this interdependence of two globin genes for their proper developmental control, we generated transgenic mice in which the human adult alpha-globin genes are transcriptionally activated by the beta-LCR either alone or in cis to their corresponding embryonic zeta-globin gene. In both cases, the human globin transgenes were expressed at the appropriate developmental period. In contrast to the beta-globin gene, developmental control of the human adult alpha-globin transgenes appears to be autonomous and maintained even when activated by an adjacent locus control region.


Blood ◽  
1995 ◽  
Vol 85 (4) ◽  
pp. 1111-1117 ◽  
Author(s):  
YC Chang ◽  
KD Smith ◽  
RD Moore ◽  
GR Serjeant ◽  
GJ Dover

Five factors have been shown to influence the 20-fold variation of fetal hemoglobin (Hb F) levels in sickle cell anemia (SS): age, sex, the alpha-globin gene number, beta-globin haplotypes, and an X-linked locus that regulates the production of Hb F-containing erythrocytes (F cells), ie, the F-cell production (FCP) locus. To determine the relative importance of these factors, we studied 257 Jamaican SS subjects from a Cohort group identified by newborn screening and from a Sib Pair study. Linear regression analyses showed that each variable, when analyzed alone, had a significant association with Hb F levels (P < .05). Multiple regression analysis, including all variables, showed that the FCP locus is the strongest predictor, accounting for 40% of Hb F variation. beta-Globin haplotypes, alpha-globin genes, and age accounted for less than 10% of the variation. The association between the beta-globin haplotypes and Hb F levels becomes apparent if the influence of the FCP locus is removed by analyzing only individuals with the same FCP phenotype. Thus, the FCP locus is the most important factor identified to date in determining Hb F levels. The variation within each FCP phenotype is modulated by factors associated with the three common beta-globin haplotypes and other as yet unidentified factor(s).


Blood ◽  
1980 ◽  
Vol 55 (6) ◽  
pp. 1060-1062 ◽  
Author(s):  
PF Little ◽  
E Whitelaw ◽  
G Annison ◽  
R Williamson ◽  
JM Kooter ◽  
...  

Abstract Many human globin-chain mutants contain amino acid replacements that result from single base changes in the corresponding globin gene. Using recombinants, the coding sequences of each of the alpha-, beta-, Ggamma- , and Agamma-globin genes have now been determined. Those sequences of DNA that are cleaved by a number of specific restriction endonucleases have been identified and accurately positioned. Mutations at these sequences abolish the restriction site, and therefore, the pattern of DNA fragments containing hybridizing globin-gene sequences is altered compared to DNA from normal persons. This allows the identification of one of a pair of cross-hybridizing human globin-gene sequences, as is shown here for the two alpha-globin, the two gamma-globin, and the delta- and beta-globin genes.


Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1246-1249 ◽  
Author(s):  
JF Codrington ◽  
HW Li ◽  
F Kutlar ◽  
LH Gu ◽  
M Ramachandran ◽  
...  

Abstract Hb A2 and its variant B2 (alpha 2 delta 2(16)(A13)Gly----Arg) were quantitated in the blood of subjects with three different types of beta- thalassemia and with the delta-B2 anomaly in cis or in trans to the beta-thalassemia determinant. In one family, the delta-B2 mutation was in cis to a newly discovered codon 47 (+A) frameshift. The levels of Hbs A2 and B2 were nearly the same and approximately 70% higher than those in simple Hb B2 heterozygotes. In two additional families, the delta-B2 variant was in trans to either a deletional beta-thalassemia (1,393 bp) involving part of the beta-globin gene and part of the beta- globin gene promoter, or to the -88 C----T promoter mutation. In both instances, the Hb B2 level was increased by approximately 80%, but the Hb A2 level was increased by approximately 270% and 200%, respectively. These data indicate two mechanisms that will cause an increase in delta chain production. One is consistent with a general mechanism concerning the relative excess of alpha chains in beta chain deficiencies which will combine with delta chains to form variable levels of Hb A2 dependent on the severity of the beta chain deficiency. The second concerns the loss of beta-globin gene promoter activity, perhaps by an absence of (or decreased) binding of specific protein(s) to this segment of DNA and a concomitant increase in delta-globin gene promoter activity in cis.


Blood ◽  
1992 ◽  
Vol 79 (9) ◽  
pp. 2471-2474 ◽  
Author(s):  
M Albitar ◽  
FE Cash ◽  
C Peschle ◽  
SA Liebhaber

Abstract Human alpha-globin is encoded by two adjacent genes, alpha 2 and alpha 1. Despite their remarkable level of structural identity, the more 5′ (alpha 2) gene is the major alpha-globin locus in the normal adult, expressed at 2.6-fold higher levels than the adjacent and more 3′ (alpha 1) globin gene. In light of the well-characterized pattern of gene activation in the human alpha- and beta-globin gene clusters during development, we considered the possibility that the relative expression of these two alpha-globin loci might be developmentally controlled. Analysis of human embryonic and early fetal erythroid RNA samples confirmed this possibility; levels of mRNA encoded by the two alpha-globin loci are equal in the embryo and subsequently shift to dominant expression of the alpha 2-globin locus at week 8 in utero. In transgenic mice carrying the entire human alpha-globin cluster (except for the theta gene) we show the same shift from equal expression of the alpha 1- and alpha 2-globin loci at the embryonic stage to predominance of the alpha 2-globin locus in the adult. These data demonstrate a switch in the expression of the two adjacent alpha-globin genes during the embryonic-to-fetal switch in erythroid development and provide an experimental system for its further characterization.


Blood ◽  
1990 ◽  
Vol 76 (1) ◽  
pp. 221-227
Author(s):  
CS Hatton ◽  
AO Wilkie ◽  
HC Drysdale ◽  
WG Wood ◽  
MA Vickers ◽  
...  

We describe a family in which alpha-thalassemia occurs in association with a deletion of 62 kilobases from a region upstream of the alpha globin genes. DNA sequence analysis has shown that the transcription units of both alpha genes downstream of this deletion are normal. Nevertheless, they fail to direct alpha globin synthesis in an interspecific hybrid containing the abnormal (alpha alpha)RA chromosome. It seems probable that previously unidentified positive regulatory sequences analogous to those detected in a corresponding position of the human beta globin cluster are removed by this deletion.


Blood ◽  
1992 ◽  
Vol 79 (9) ◽  
pp. 2471-2474 ◽  
Author(s):  
M Albitar ◽  
FE Cash ◽  
C Peschle ◽  
SA Liebhaber

Human alpha-globin is encoded by two adjacent genes, alpha 2 and alpha 1. Despite their remarkable level of structural identity, the more 5′ (alpha 2) gene is the major alpha-globin locus in the normal adult, expressed at 2.6-fold higher levels than the adjacent and more 3′ (alpha 1) globin gene. In light of the well-characterized pattern of gene activation in the human alpha- and beta-globin gene clusters during development, we considered the possibility that the relative expression of these two alpha-globin loci might be developmentally controlled. Analysis of human embryonic and early fetal erythroid RNA samples confirmed this possibility; levels of mRNA encoded by the two alpha-globin loci are equal in the embryo and subsequently shift to dominant expression of the alpha 2-globin locus at week 8 in utero. In transgenic mice carrying the entire human alpha-globin cluster (except for the theta gene) we show the same shift from equal expression of the alpha 1- and alpha 2-globin loci at the embryonic stage to predominance of the alpha 2-globin locus in the adult. These data demonstrate a switch in the expression of the two adjacent alpha-globin genes during the embryonic-to-fetal switch in erythroid development and provide an experimental system for its further characterization.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3171-3171
Author(s):  
Russell E. Ware ◽  
Barry Eggleston ◽  
Tatiana Abramova ◽  
Sherri A. Zimmerman ◽  
Alice Lail ◽  
...  

Abstract Fetal hemoglobin (HbF) is recognized as a major determinant of clinical disease severity in children and adults with sickle cell anemia (SCA). Patients with elevated HbF levels have a milder disease course, and many current therapeutic protocols for SCA include pharmacological induction of HbF. However, baseline and treatment HbF levels vary widely due to presumed genetic and environmental factors. Recognized globin gene modifiers of HbF include the beta globin haplotype and a potential contribution from concomitant alpha thalassemia. To characterize more fully the influence of globin gene modifiers on both baseline and treatment HbF levels, we retrospectively determined the beta globin haplotype (Benin, CAR, Senegal, Cameroon, or Arab-Indian) by selective gamma globin gene nucleotide sequencing and the alpha globin gene number (2, 3, or 4) by PCR for 67 African-American children with SCA receiving hydroxyurea therapy at stable maximal tolerated dose (MTD). The four beta globin haplotypes and frequencies identified in our cohort of children include Benin (0.61), CAR (0.17), Senegal (0.12), and Cameroon (0.10). The number of alpha globin genes and frequencies identified were 4 genes (0.72), 3 genes (0.25) and 2 genes (0.03). Baseline and MTD HbF levels were analyzed according to each variable. The average baseline HbF value for the entire cohort of children was 7.7 ± 4.4% (median 7.6%, range 1.3 – 19.3%), while the average treatment HbF value was 23.9 ± 7.2 % (median 22.9%, range 10.2 – 40.7%). All 67 children increased their HbF in response to hydroxyurea therapy (median 16.7%, range 5.0 – 28.8%). There was a modest but statistically significant correlation between the baseline and treatment HbF (r=0.66, p&lt;.0001). The estimated effect of one unit change in baseline HbF on treatment HbF was 1.11 (95% CI of 0.78, 1.43). When baseline %HbF was analyzed according to the beta globin haplotype, the overall ANOVA had a p-value of 0.02, indicating a statistically significant influence. Further analysis confirmed associations previously identified in adults with SCA, i.e. children with at least one copy of the CAR haplotype had a lower baseline HbF (5.9% vs 8.4%, p=.05), while those with at least one copy of the Senegal haplotype had a higher baseline HbF (11.1% vs 6.7%, p&lt;.001). When hydroxyurea MTD (treatment) HbF values were analyzed according to beta globin haplotype while adjusting for baseline HbF, however, the effect of beta globin haplotype was not statistically significant (p=.13). Analyses of HbF according to alpha globin gene number revealed no statistically significant effects on either baseline or treatment HbF values. Taken together, these data support the hypothesis that beta globin haplotype significant influences baseline HbF values for children with SCA, but has no significant effects on hydroxyurea MTD HbF values. Accordingly, children with SCA should be offered hydroxyurea based solely on clinical indications, without consideration of baseline HbF or beta globin haplotype. Even children with low baseline HbF values or the CAR beta globin haplotype can respond to hydroxyurea therapy with an elevated %HbF. Future studies designed to identify genetic modifiers of treatment HbF values should focus on sequence polymorphisms in non-globin genes that have trans-acting effects on gamma globin gene expression.


Sign in / Sign up

Export Citation Format

Share Document