experimental system
Recently Published Documents


TOTAL DOCUMENTS

2890
(FIVE YEARS 623)

H-INDEX

66
(FIVE YEARS 9)

Author(s):  
Yusuke Yasugahira ◽  
Masaharu Nagayama

AbstractTheoretical analysis using mathematical models is often used to understand a mechanism of collective motion in a self-propelled system. In the experimental system using camphor disks, several kinds of characteristic motions have been observed due to the interaction of two camphor disks. In this paper, we understand the emergence mechanism of the motions caused by the interaction of two self-propelled bodies by analyzing the global bifurcation structure using the numerical bifurcation method for a mathematical model. Finally, it is also shown that the irregular motion, which is one of the characteristic motions, is chaotic motion and that it arises from periodic bifurcation phenomena and quasi-periodic motions due to torus bifurcation.


2022 ◽  
Vol 119 (3) ◽  
pp. e2116623119
Author(s):  
Chen Hao ◽  
Yanzhi Yang ◽  
Jianmei Du ◽  
Xing Wang Deng ◽  
Lei Li

Leaf senescence is a critical process in plants and has a direct impact on many important agronomic traits. Despite decades of research on senescence-altered mutants via forward genetics and functional assessment of senescence-associated genes (SAGs) via reverse genetics, the senescence signal and the molecular mechanism that perceives and transduces the signal remain elusive. Here, using dark-induced senescence (DIS) of Arabidopsis leaf as the experimental system, we show that exogenous copper induces the senescence syndrome and transcriptomic changes in light-grown plants parallel to those in DIS. By profiling the transcriptomes and tracking the subcellular copper distribution, we found that reciprocal regulation of plastocyanin, the thylakoid lumen mobile electron carrier in the Z scheme of photosynthetic electron transport, and SAG14 and plantacyanin (PCY), a pair of interacting small blue copper proteins located on the endomembrane, is a common thread in different leaf senescence scenarios, including DIS. Genetic and molecular experiments confirmed that the PCY-SAG14 module is necessary and sufficient for promoting DIS. We also found that the PCY-SAG14 module is repressed by a conserved microRNA, miR408, which in turn is repressed by phytochrome interacting factor 3/4/5 (PIF3/4/5), the key trio of transcription factors promoting DIS. Together, these findings indicate that intracellular copper redistribution mediated by PCY-SAG14 has a regulatory role in DIS. Further deciphering the copper homeostasis mechanism and its interaction with other senescence-regulating pathways should provide insights into our understanding of the fundamental question of how plants age.


2022 ◽  
Author(s):  
ZHAO Zhi-xiong ◽  
ZHANG Hua ◽  
Kuang Qing-yun ◽  
Li Bo ◽  
Hu Lin

Abstract A method is proposed for phase conjecture based on the intensity curve of a two-dimensional(2D) image by computing a polynomial equation. The intensity values of the 2D image, which represents the distance between the image detectors and the three-dimensional(3D) scene is converted to phase information by our method. The results of numerical calculation with phase conjecture are analyzed. And what’s more, the numerical reconstruction results with phase information obtained as initial phase factors of a complex object for Fresnel kinoform and dynamic pseudorandom-phase tomographic computer holography(DPP-TCH) are compared. The peak signal-to-noise ratio(PSNR) and correlation coefficient (CC) between the reconstructed images and original object are analyzed. An experimental system is designed for photoelectric holographic reconstruction based on phase-only liquid crystal spatial light modulator(LC-SLM) and mist screen. The electro-optical experimental results indicate that suppressed the speckle noise 3D images that can be observed with naked eye have been obtained.


2022 ◽  
Author(s):  
Hirooki Higami ◽  
Yoshifumi Kashima ◽  
Kensuke Yokoi ◽  
Shinnosuke Nomura ◽  
Hikaru Tateyama ◽  
...  

Abstract PurposeRotational atherectomy (RA) and orbital atherectomy (OA) are effective procedures for severe calcified coronary artery disease. Nonetheless, vessel perforation remains an adverse complication of these procedures. This study aimed to evaluate factors affecting elastic material damage caused by RA and OA.MethodsAn in vitro assessment was conducted in which the damage to the rubber latex, an elastic material, after RA was evaluated under various conditions, including burr rotational speed (100,000–220,000 rotations per minute), approaching curve, burr size (1.25 mm, 1.75 mm, and 2.0 mm), and fluid viscosity (water and low-molecular weight dextran). Similarly, the rubber latex damage after OA was evaluated in the same experimental system under various conditions, including crown rotational speed, approaching curve, and fluid viscosity.ResultsIn RA, the rubber latex was damaged at lower rotational speeds (p = 0.003), tighter approaching curves (p < 0.0001), and lower fluid viscosity (p = 0.03). In OA, the rubber latex was generally severely damaged.ConclusionA higher rotational speed, coaxial approach for the wall, and higher viscosity contributed to lesser elastic material damage in RA. The safety mechanism for elastic material in OA proved less effective.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 139
Author(s):  
Jinfeng Wang ◽  
Wanying Chang ◽  
Jing Xie

In this paper, the electronic expansion valve (EXV) on the single-tube heat exchange experimental platform was used as a research object. Firstly, the EXVs were selected according to the experimental requirements, and the functional parameters were set. Subsequently, the effective opening ranges of the EXVs were determined by manual control, and the control effects of the EXVs installed at the front and back ends of the test section were compared. Finally, by self-tuning and optimizing the best response curves, the proportional and integral coefficients suitable for the experimental platform were obtained; thus, the automatic intelligent control of EXV based on the proportional integral (PI) control algorithm was realized. From setting EXV functional parameters to realizing PI control, an appropriate experimental system-debugging solution for the whole process could be obtained. Based on the solution, the system stability could be improved, and the transition process time could be shortened. Furthermore, the solution also provided a method to guarantee the accuracy of experimental data and could be applied to the debugging of similar experimental systems.


2022 ◽  
Author(s):  
Brian D Rutter ◽  
Thi-Thu-Huyen Chu ◽  
Kamil K Zajt ◽  
Jean-Felix Dallery ◽  
Richard J O'Connell ◽  
...  

Fungal phytopathogens secrete extracellular vesicles (EVs) associated with enzymes and phytotoxic metabolites. While these vesicles are thought to promote infection, defining the true contents and functions of fungal EVs, as well as suitable protein markers, is an ongoing process. To expand our understanding of fungal EVs and their possible roles during infection, we purified EVs from the hemibiotrophic phytopathogen Colletotrichum higginsianum, the causative agent of anthracnose disease in multiple plant species, including Arabidopsis thaliana. EVs were purified in large numbers from the supernatant of protoplasts but not the supernatant of intact mycelial cultures. We purified two separate populations of EVs, each associated with over 700 detected proteins, including proteins involved in vesicle transport, cell wall biogenesis and the synthesis of secondary metabolites. We selected two SNARE proteins (Snc1 and Sso2) and one 14-3-3 protein (Bmh1) as potential EV markers and generated transgenic lines expressing fluorescent fusions. Each marker was confirmed to be protected inside EVs. Fluorescence microscopy was used to examine the localization of each marker during infection on Arabidopsis leaves. These findings further our understanding of EVs in fungal phytopathogens and will help build an experimental system to study EV inter-kingdom communication between plants and fungi.


Author(s):  
Mingke Ren ◽  
Xiling Xie ◽  
Dequan Yang ◽  
Zhiyi Zhang

The axial vibration of a shaft-bearing system induced by the thrust excitation is usually composed of multiple tones. To suppress the axial vibration of the shaft-bearing system, two inertial electro-magnetic actuators are mounted symmetrically at the thrust bearing and work in parallel to exert control forces. The control signal is generated by an adaptive algorithm with subband filtering, which aims to attenuate over a broadband the vibration of the thrust bearing and its foundation induced by the dynamic thrust force. To reduce computational complexity, the recursive computation is partly realized with the auto-regressive moving average (ARMA) model. The proposed active control approach is evaluated numerically at first with the dynamic model of the shaft-bearing system and then verified with an experimental system. It is demonstrated by the numerical and experimental results that the active control approach is able to suppress the multi-tone vibration of the thrust bearing and the foundation. Moreover, in comparison to the single-band adaptive feedback algorithm, the adaptive algorithm with subband filtering is more effective when the disturbance contains multiple tones.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 416
Author(s):  
Yang Yu ◽  
Bo Liu ◽  
Feng Xia

A four-loop shaped structure of fiber Bragg grating (FBG) acoustic emission (AE) sensor based on additive manufacturing (AM) technology is proposed in the letter. The finite element analysis (FEA) method was used to model and analyze the sensor structure. We aimed at improving the sensitivity, the static load analysis, and the dynamic response analysis of the normal FBG acoustic emission sensor and the FBG AE sensor with improved structure parameters. We constructed the FBG AE sensor experimental system based on a narrowband laser demodulation method and test on real acoustic emission signals. The results demonstrated that the response sensitivity of the FBG acoustic emission sensor was 1.47 times higher than the sensitivity of the normal FBG sensor. The sensitivity coefficient of PLA-AE-FBG2 sensor was 3.057, and that of PLA-AE-FBG1 was 2.0702. Through structural design and parameter optimization, the sensitivity and stability of the FBG AE sensor are improved. The four-loop shaped sensor is more suitable for the health monitoring in fields such as aero-engine blade, micro-crack of structure, and crack growth in bonded joints. While ensuring the sensing characteristics, sensitivity, and stability of the four-loop shaped sensor have been enhanced. It is possible to apply the FBG AE sensor in some complex engineering environments.


2022 ◽  
Vol 12 (1) ◽  
pp. 478
Author(s):  
Guotao Huo ◽  
Zhonghai Ma ◽  
Yeqing Huang ◽  
Songlin Nie ◽  
Zhenhua Zhang

Under the requirement of clean production, a new type of slurry blast device for mechanically removing oxide scale on the surface of steel strips is presented, which can avoid the serious problems of rapid wear, low service life, and low efficiency of the traditional abrasive water jet with a nozzle. In this paper, the numerical simulation of the rotating blade centrifugal jet in the slurry blast device is conducted based on CFD, where the DPM and the erosion model are innovatively employed to simulate the movement characteristics of abrasive particles and the erosion rate of mixed slurry on the surface of the steel strip. Simulation results show that the erosion rate and particle motion velocity are proportional to the blade rotation speed and inlet pressure. Reasonable inlet pressure and rotation speed are helpful for improving the rust removal efficiency of slurry blast devices. An experimental system is established to validate the simulation results. The experimental results are consistent with the simulation trend, which exhibits that the developed slurry blast device is feasible for steel strip descaling. This work will play substantial guiding roles in the engineering optimization of slurry blast devices for steel strip descaling.


Animals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 113
Author(s):  
Michelle Tillmanns ◽  
Kees Scheepens ◽  
Marieke Stolte ◽  
Swetlana Herbrandt ◽  
Nicole Kemper ◽  
...  

In this study, a pig toilet was installed on an organic pig farm, which enabled pigs to use a lying area littered with straw and keep it clean. The pig toilet was separated into a defaecation area and a urination area and nursery pigs were trained to use the urination area by means of a rewarding system. A total of 24 piglets were weaned at 6–7 weeks of age and housed in the experimental system for four-week periods. Per trial, a group of four pigs was formed, and videos were recorded on two days per week (08:00 to 18:00). Direct observation was carried out in the first and last week of each trial. In total, 1500 eliminations were video-analysed. An individual pig had an average of 7.1 ± 1.4 defaecations and 4.8 ± 0.8 urinations per day. In total, 96.4% of all urinations and 97.4% of all defaecations were performed in the pig toilet. However, most urinations took place in the defaecation area as well (90.4%). Even if the training to spatially separate defecation and urination behaviour was not successful, we showed that a pig toilet offers the possibility to create littered lying areas, possibly increasing animal welfare.


Sign in / Sign up

Export Citation Format

Share Document