expression system
Recently Published Documents


TOTAL DOCUMENTS

4722
(FIVE YEARS 1039)

H-INDEX

114
(FIVE YEARS 9)

2022 ◽  
Vol 10 (1) ◽  
pp. 193
Author(s):  
Hương Giang Lê ◽  
Jung-Mi Kang ◽  
Tuấn Cường Võ ◽  
Won Gi Yoo ◽  
Kon Ho Lee ◽  
...  

Cysteine proteases belonging to the falcipain (FP) family play a pivotal role in the biology of malaria parasites and have been extensively investigated as potential antimalarial drug targets. Three paralogous FP-family cysteine proteases of Plasmodium malariae, termed malapains 2–4 (MP2–4), were identified in PlasmoDB. The three MPs share similar structural properties with the FP-2/FP-3 subfamily enzymes and exhibit a close phylogenetic lineage with vivapains (VXs) and knowpains (KPs), FP orthologues of P. vivax and P. knowlesi. Recombinant MP-2 and MP-4 were produced in a bacterial expression system, and their biochemical properties were characterized. Both recombinant MP-2 and MP-4 showed enzyme activity across a broad range of pH values with an optimum activity at pH 5.0 and relative stability at neutral pHs. Similar to the FP-2/FP-3 subfamily enzymes in other Plasmodium species, recombinant MP-2 and MP-4 effectively hydrolyzed hemoglobin at acidic pHs. They also degraded erythrocyte cytoskeletal proteins, such as spectrin and band 3, at a neutral pH. These results imply that MP-2 and MP-4 are redundant hemoglobinases of P. malariae and may also participate in merozoite egression by degrading erythrocyte cytoskeletal proteins. However, compared with other FP-2/FP-3 enzymes, MP-2 showed a strong preference for arginine at the P2 position. Meanwhile, MP-4 showed a primary preference for leucine at the P2 position but a partial preference for phenylalanine. These different substrate preferences of MPs underscore careful consideration in the design of optimized inhibitors targeting the FP-family cysteine proteases of human malaria parasites.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 162
Author(s):  
Tessy A. H. Hick ◽  
Corinne Geertsema ◽  
Maurice G. L. Henquet ◽  
Dirk E. Martens ◽  
Stefan W. Metz ◽  
...  

Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne virus that causes a severe febrile illness with long-lasting arthralgia in humans. As there is no vaccine to protect humans and limit CHIKV epidemics, the virus continues to be a global public health concern. The CHIKV envelope glycoproteins E1 and E2 are important immunogens; therefore, the aim of this study is to produce trimeric CHIKV spikes in insect cells using the baculovirus expression system. The CHIKV E1 and E2 ectodomains were covalently coupled by a flexible linker that replaces the 6K transmembrane protein. The C-terminal E1 transmembrane was replaced by a Strep-tag II for the purification of secreted spikes from the culture fluid. After production in Sf9 suspension cells (product yields of 5.8–7.6 mg/L), the CHIKV spikes were purified by Strep-Tactin affinity chromatography, which successfully cleared the co-produced baculoviruses. Bis(sulfosuccinimidyl)suberate cross-linking demonstrated that the spikes are secreted as trimers. PNGase F treatment showed that the spikes are glycosylated. LC–MS/MS-based glycoproteomic analysis confirmed the glycosylation and revealed that the majority are of the mannose- or hybrid-type N-glycans and <2% have complex-type N-glycans. The LC –MS/MS analysis also revealed three O-glycosylation sites in E1. In conclusion, the trimeric, glycosylated CHIKV spikes have been successfully produced in insect cells and are now available for vaccination studies.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Minna Shin ◽  
Kiju Kim ◽  
Hyo-Ji Lee ◽  
Rangyeon Lee ◽  
Yu-Jin Jung ◽  
...  

AbstractZika virus (ZIKV) is a mosquito-borne virus that has a high risk of inducing Guillain–Barré syndrome and microcephaly in newborns. Because vaccination is considered the most effective strategy against ZIKV infection, we designed a recombinant vaccine utilizing the baculovirus expression system with two strains of ZIKV envelope protein (MR766, Env_M; ZBRX6, Env_Z). Animals inoculated with Env_M and Env_Z produced ZIKV-specific antibodies and secreted effector cytokines such as interferon-γ, tumor necrosis factor-α, and interleukin-12. Moreover, the progeny of immunized females had detectable maternal antibodies that protected them against two ZIKV strains (MR766 and PRVABC59) and a Dengue virus strain. We propose that the baculovirus expression system ZIKV envelope protein recombinant provides a safe and effective vaccine strategy.


2022 ◽  
Vol 12 ◽  
Author(s):  
Hongqiang Lou ◽  
Xusheng Li ◽  
Xiusheng Sheng ◽  
Shuiqin Fang ◽  
Shaoye Wan ◽  
...  

Campylobacter jejuni (C. jejuni) is one of the major pathogens contributing to the enteritis in humans. Infection can lead to numerous complications, including but not limited to Guillain-Barre syndrome, reactive arthritis, and Reiter’s syndrome. Over the past two decades, joint efforts have been made toward developing a proper strategy of limiting the transmission of C. jejuni to humans. Nevertheless, except for biosecurity measures, no available vaccine has been developed so far. Judging from the research findings, Omp18, AhpC outer membrane protein, and FlgH flagellin subunits of C. jejuni could be adopted as surface protein antigens of C. jejuni for screening dominant epitope thanks to their strong antigenicity, expression of varying strains, and conservative sequence. In this study, bioinformatics technology was adopted to analyze the T-B antigenic epitopes of Omp18, AhpC, and FlgH in C. jejuni strain NCTC11168. Both ELISA and Western Blot methods were adopted to screen the dominant T-B combined epitope. GGS (GGCGGTAGC) sequence was adopted to connect the dominant T-B combined epitope peptides and to construct the prokaryotic expression system of tandem repeats of antigenic epitope peptides. The mouse infection model was adopted to assess the immunoprotective effect imposed by the trivalent T-B combined with antigen epitope peptide based on Omp18/AhpC/FlgH. In this study, a tandem epitope AhpC-2/Omp18-1/FlgH-1 was developed, which was composed of three epitopes and could effectively enhance the stability and antigenicity of the epitope while preserving its structure. The immunization of BALB/c mice with a tandem epitope could induce protective immunity accompanied by the generation of IgG2a antibody response through the in vitro synthesis of IFN-γ cytokines. Judging from the results of immune protection experiments, the colonization of C. jejuni declined to a significant extent, and it was expected that AhpC-2/Omp18-1/FlgH-1 could be adopted as a candidate antigen for genetic engineering vaccine of C. jejuni MAP.


2022 ◽  
Author(s):  
Anika Mijakovac ◽  
Karlo Miškec ◽  
Jasminka Krištić ◽  
Vedrana Vičić Bočkor ◽  
Vanja Tadić ◽  
...  

Author(s):  
Orla Rawley ◽  
Laura L. Swystun ◽  
Christine Brown ◽  
Kate Nesbitt ◽  
Margaret L Rand ◽  
...  

Von Willebrand factor (VWF) is an extremely cysteine-rich multimeric protein that is essential for maintaining normal hemostasis. The cysteine residues of VWF monomers form intra- and inter-molecular disulfide bonds that regulate its structural conformation, multimer distribution and ultimately its hemostatic activity. In this study we investigated and characterized the molecular and pathogenic mechanisms through which a novel cysteine variant p.(Cys1084Tyr) causes an unusual, mixed phenotype form of von Willebrand disease (VWD). Phenotypic data including bleeding scores, laboratory values, VWF multimer distribution and desmopressin response kinetics were investigated in 5 members (2 parents and 3 daughters) of a consanguineous family. VWF synthesis and secretion were also assessed in a heterologous expression system and in a transient transgenic mouse model. Heterozygosity for p.(Cys1084Tyr) was associated with variable expressivity of qualitative VWF defects. Heterozygous individuals had reduced VWF:GPIbM (&lt;0.40IU/mL) and VWF:CB (&lt;0.35IU/mL) as well as relative reductions in high-molecular weight multimers, consistent with type 2A VWD. In addition to these qualitative defects, homozygous individuals also displayed reduced FVIII:C/VWF:Ag leading to very low FVIII levels (0.03-0.1IU/mL) as well as reduced VWF:Ag (&lt;0.40IU/mL) and VWF:GPIbM (&lt;0.30IU/ml). Accelerated VWF clearance and impaired VWF secretion contributed to the fully expressed homozygous phenotype with impaired secretion arising due to disordered disulfide connectivity.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Shuang Han ◽  
Fang Gong ◽  
Yifeng Xue ◽  
Chunxin Wang ◽  
Xiaowei Qi

Serum P1NP, one of the important biomarkers for bone turnover, is commonly used for the prediction of bone fracture and the prognosis of osteoporosis after therapy. We developed a P1NP chemiluminescence assay and evaluated changes in bone metabolism markers in lung transplant patients. The screened 2 P1NP antibodies with constructed antigens and α-1 chain antigens expressed by the Corynebacterium glutamate expression system were applied into assay development. The assay performance was evaluated to examine the reliability. A normal Q-Q plot was used to establish male reference interval. Changes of bone metabolism markers before and after lung transplantation in 19 patients were evaluated. The linear factor R of P1NP reagent was greater than 0.99. The limit of detection was 3.32 ng/ml. The precision of the three batches of P1NP reagents was lower than 8%. Method comparison with Roche P1NP reagent showed that the correlation coefficient R2 was 0.91. In the monitoring of bone mass in a short time, bone metabolism markers can better indicate the change of bone mass, while the traditional bone mineral density detection is lagging behind the bone metabolism markers. P1NP and β-CrossLap to bone mass change in patients after lung transplantation, and P1NP and β-CrossLap are very good clinical markers for bone mass monitoring.


Vaccines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 96
Author(s):  
Iuliia A. Merkuleva ◽  
Dmitry N. Shcherbakov ◽  
Mariya B. Borgoyakova ◽  
Daniil V. Shanshin ◽  
Andrey P. Rudometov ◽  
...  

The receptor-binding domain (RBD) of the protein S SARS-CoV-2 is considered to be one of the appealing targets for developing a vaccine against COVID-19. The choice of an expression system is essential when developing subunit vaccines, as it ensures the effective synthesis of the correctly folded target protein, and maintains its antigenic and immunogenic properties. Here, we describe the production of a recombinant RBD protein using prokaryotic (pRBD) and mammalian (mRBD) expression systems, and compare the immunogenicity of prokaryotic and mammalian-expressed RBD using a BALB/c mice model. An analysis of the sera from mice immunized with both variants of the protein revealed that the mRBD expressed in CHO cells provides a significantly stronger humoral immune response compared with the RBD expressed in E.coli cells. A specific antibody titer of sera from mice immunized with mRBD was ten-fold higher than the sera from the mice that received pRBD in ELISA, and about 100-fold higher in a neutralization test. The data obtained suggests that mRBD is capable of inducing neutralizing antibodies against SARS-CoV-2.


2022 ◽  
Vol 44 (1) ◽  
pp. 301-308
Author(s):  
Sun-Hee Kim ◽  
Hee-Jin Jeong

Immunocytokines, antibody-cytokine fusion proteins, have the potential to improve the therapeutic index of cytokines by delivering the cytokine to the site of localized tumor cells using antibodies. In this study, we produced a recombinant anti-programmed death-ligand 1 (PD-L1) scFv, an antibody fragment against PD-L1 combined with a Neo2/15, which is an engineered interleukin with superior function using an E. coli expression system. We expressed the fusion protein in a soluble form and purified it, resulting in high yield and purity. The high PD-L1-binding efficiency of the fusion protein was confirmed via enzyme-linked immunosorbent assay, suggesting the application of this immunocytokine as a cancer-related therapeutic agent.


Sign in / Sign up

Export Citation Format

Share Document