Comparison of in vitro and in vivo splice site selection in kappa-immunoglobulin precursor mRNA

1988 ◽  
Vol 8 (6) ◽  
pp. 2610-2619
Author(s):  
D E Lowery ◽  
B G Van Ness

The processing of a number of kappa-immunoglobulin primary mRNA (pre-mRNA) constructs has been examined both in vitro and in vivo. When a kappa-immunoglobulin pre-mRNA containing multiple J segment splice sites is processed in vitro, the splice sites are used with equal frequency. The presence of signal exon, S-V intron, or variable (V) region has no effect on splice site selection in vitro. Nuclear extracts prepared from a lymphoid cell line do not restore correct splice site selection. Splice site selection in vitro can be altered by changing the position or sequence of J splice donor sites. These results differ from the processing of similar pre-mRNAs expressed in vivo by transient transfection. The 5'-most J splice donor site was exclusively selected in vivo, even in nonlymphoid cells, and even in transcripts where in vitro splicing favored a 3' J splice site. The in vitro results are consistent with a model proposing that splice site selection is influenced by splice site strength and proximity; however, our in vivo results demonstrate a number of discrepancies with such a model and suggest that splice site selection may be coupled to transcription or a higher-order nuclear structure.

1988 ◽  
Vol 8 (6) ◽  
pp. 2610-2619 ◽  
Author(s):  
D E Lowery ◽  
B G Van Ness

The processing of a number of kappa-immunoglobulin primary mRNA (pre-mRNA) constructs has been examined both in vitro and in vivo. When a kappa-immunoglobulin pre-mRNA containing multiple J segment splice sites is processed in vitro, the splice sites are used with equal frequency. The presence of signal exon, S-V intron, or variable (V) region has no effect on splice site selection in vitro. Nuclear extracts prepared from a lymphoid cell line do not restore correct splice site selection. Splice site selection in vitro can be altered by changing the position or sequence of J splice donor sites. These results differ from the processing of similar pre-mRNAs expressed in vivo by transient transfection. The 5'-most J splice donor site was exclusively selected in vivo, even in nonlymphoid cells, and even in transcripts where in vitro splicing favored a 3' J splice site. The in vitro results are consistent with a model proposing that splice site selection is influenced by splice site strength and proximity; however, our in vivo results demonstrate a number of discrepancies with such a model and suggest that splice site selection may be coupled to transcription or a higher-order nuclear structure.


2001 ◽  
Vol 21 (6) ◽  
pp. 1942-1952 ◽  
Author(s):  
Rosemary C. Dietrich ◽  
Marian J. Peris ◽  
Andrew S. Seyboldt ◽  
Richard A. Padgett

ABSTRACT U12-dependent introns containing alterations of the 3′ splice site AC dinucleotide or alterations in the spacing between the branch site and the 3′ splice site were examined for their effects on splice site selection in vivo and in vitro. Using an intron with a 5′ splice site AU dinucleotide, any nucleotide could serve as the 3′-terminal nucleotide, although a C residue was most active, while a U residue was least active. The penultimate A residue, by contrast, was essential for 3′ splice site function. A branch site-to-3′ splice site spacing of less than 10 or more than 20 nucleotides strongly activated alternative 3′ splice sites. A strong preference for a spacing of about 12 nucleotides was observed. The combined in vivo and in vitro results suggest that the branch site is recognized in the absence of an active 3′ splice site but that formation of the prespliceosomal complex A requires an active 3′ splice site. Furthermore, the U12-type spliceosome appears to be unable to scan for a distal 3′ splice site.


1987 ◽  
Vol 7 (4) ◽  
pp. 1346-1351
Author(s):  
D E Lowery ◽  
B G Van Ness

The in vitro splicing of kappa immunoglobulin precursor mRNA was studied as an example of a naturally occurring mRNA possessing multiple 5' splice sites. Several kappa mRNAs were generated in vitro by using an SP6 transcription system and were spliced in nuclear extracts derived from HeLa cells. Products and intermediates resulting from in vitro splicing were identified and characterized. In contrast to the in vivo situation, in which apparently only the 5'-most splice donor site is used, all of the 5' splice sites were used in vitro with equal frequency. Neither the presence or absence of variable region coding sequences nor the deletion of intron sequences had an effect on in vitro splice site selection.


1997 ◽  
Vol 17 (4) ◽  
pp. 1776-1786 ◽  
Author(s):  
B Chabot ◽  
M Blanchette ◽  
I Lapierre ◽  
H La Branche

The hnRNP A1 pre-mRNA is alternatively spliced to yield the A1 and A1b mRNAs, which encode proteins differing in their ability to modulate 5' splice site selection. Sequencing a genomic portion of the murine A1 gene revealed that the intron separating exon 7 and the alternative exon 7B is highly conserved between mouse and human. In vitro splicing assays indicate that a conserved element (CE1) from the central portion of the intron shifts selection toward the distal donor site when positioned in between the 5' splice sites of exon 7 and 7B. In vivo, the CE1 element promotes exon 7B skipping. A 17-nucleotide sequence within CE1 (CE1a) is sufficient to activate the distal 5' splice site. RNase T1 protection/immunoprecipitation assays indicate that hnRNP A1 binds to CE1a, which contains the sequence UAGAGU, a close match to the reported optimal A1 binding site, UAGGGU. Replacing CE1a by different oligonucleotides carrying the sequence UAGAGU or UAGGGU maintains the preference for the distal 5' splice site. In contrast, mutations in the AUGAGU sequence activate the proximal 5' splice site. In support of a direct role of the A1-CE1 interaction in 5'-splice-site selection, we observed that the amplitude of the shift correlates with the efficiency of A1 binding. Whereas addition of SR proteins abrogates the effect of CE1, the presence of CE1 does not modify U1 snRNP binding to competing 5' splice sites, as judged by oligonucleotide-targeted RNase H protection assays. Our results suggest that hnRNP A1 modulates splice site selection on its own pre-mRNA without changing the binding of U1 snRNP to competing 5' splice sites.


1987 ◽  
Vol 7 (4) ◽  
pp. 1346-1351 ◽  
Author(s):  
D E Lowery ◽  
B G Van Ness

The in vitro splicing of kappa immunoglobulin precursor mRNA was studied as an example of a naturally occurring mRNA possessing multiple 5' splice sites. Several kappa mRNAs were generated in vitro by using an SP6 transcription system and were spliced in nuclear extracts derived from HeLa cells. Products and intermediates resulting from in vitro splicing were identified and characterized. In contrast to the in vivo situation, in which apparently only the 5'-most splice donor site is used, all of the 5' splice sites were used in vitro with equal frequency. Neither the presence or absence of variable region coding sequences nor the deletion of intron sequences had an effect on in vitro splice site selection.


2009 ◽  
Vol 37 (6) ◽  
pp. 1207-1213 ◽  
Author(s):  
Yan Qiu ◽  
Coralie Hoareau-Aveilla ◽  
Sebastian Oltean ◽  
Steven J. Harper ◽  
David O. Bates

Anti-angiogenic VEGF (vascular endothelial growth factor) isoforms, generated from differential splicing of exon 8, are widely expressed in normal human tissues but down-regulated in cancers and other pathologies associated with abnormal angiogenesis (cancer, diabetic retinopathy, retinal vein occlusion, the Denys–Drash syndrome and pre-eclampsia). Administration of recombinant VEGF165b inhibits ocular angiogenesis in mouse models of retinopathy and age-related macular degeneration, and colorectal carcinoma and metastatic melanoma. Splicing factors and their regulatory molecules alter splice site selection, such that cells can switch from the anti-angiogenic VEGFxxxb isoforms to the pro-angiogenic VEGFxxx isoforms, including SRp55 (serine/arginine protein 55), ASF/SF2 (alternative splicing factor/splicing factor 2) and SRPK (serine arginine domain protein kinase), and inhibitors of these molecules can inhibit angiogenesis in the eye, and splice site selection in cancer cells, opening up the possibility of using splicing factor inhibitors as novel anti-angiogenic therapeutics. Endogenous anti-angiogenic VEGFxxxb isoforms are cytoprotective for endothelial, epithelial and neuronal cells in vitro and in vivo, suggesting both an improved safety profile and an explanation for unpredicted anti-VEGF side effects. In summary, C-terminal distal splicing is a key component of VEGF biology, overlooked by the vast majority of publications in the field, and these findings require a radical revision of our understanding of VEGF biology in normal human physiology.


1991 ◽  
Vol 11 (12) ◽  
pp. 5945-5953
Author(s):  
J E Harper ◽  
J L Manley

Adenovirus E1A pre-mRNA was used as a model to examine alternative 5' splice site selection during in vitro splicing reactions. Strong preference for the downstream 13S 5' splice site over the upstream 12S or 9S 5' splice sites was observed. However, the 12S 5' splice site was used efficiently when a mutant pre-mRNA lacking the 13S 5' splice site was processed, and 12S splicing from this substrate was not reduced by 13S splicing from a separate pre-mRNA, demonstrating that 13S splicing reduced 12S 5' splice site selection through a bona fide cis-competition. DEAE-cellulose chromatography of nuclear extract yielded two fractions with different splicing activities. The bound fraction contained all components required for efficient splicing of simple substrates but was unable to utilize alternative 5' splice sites. In contrast, the flow-through fraction, which by itself was inactive, contained an activity required for alternative splicing and was shown to stimulate 12S and 9S splicing, while reducing 13S splicing, when added to reactions carried out by the bound fraction. Furthermore, the activity, which we have called distal splicing factor (DSF), enhanced utilization of an upstream 5' splice site on a simian virus 40 early pre-mRNA, suggesting that the factor acts in a position-dependent, substrate-independent fashion. Several lines of evidence are presented suggesting that DSF is a non-small nuclear ribonucleoprotein protein. Finally, we describe a functional interaction between DSF and ASF, a protein that enhances use of downstream 5' splice sites.


1991 ◽  
Vol 11 (12) ◽  
pp. 6075-6083
Author(s):  
Z Dominski ◽  
R Kole

Model pre-mRNAs containing two introns and three exons, derived from the human beta-globin gene, were used to study the effects of internal exon length on splice site selection. Splicing was assayed in vitro in HeLa nuclear extracts and in vivo during transient expression in transfected HeLa cells. For substrates with internal exons 87, 104, and 171 nucleotides in length, in vitro splicing proceeded via a regular splicing pathway, in which all three exons were included in the spliced product. Primary transcripts with internal exons containing 23, 29, and 33 nucleotides were spliced by an alternative pathway, in which the first exon was joined directly to the third one. The internal exon was missing from the spliced product and together with two flanking introns was included in a large lariat structure. The same patterns of splicing were retained when transcripts containing 171-, 33-, and 29-nucleotide-long internal exons were spliced in vivo. A transcript containing a 51-nucleotide-long exon was spliced in vitro via both pathways but in vivo generated only a correctly spliced product. Skipping of short internal exons was reversed both in vitro and in vivo when purines in the upstream polypyrimidine tract were replaced by pyrimidines. The changes in the polypyrimidine tract achieved by these substitutions led in vitro to complete (transcripts containing 28 pyrimidines in a row) or partial (transcripts containing 15 pyrimidines in a row) restoration of a regular splicing pathway. Splicing in vivo of these transcripts led exclusively to the spliced product containing all three exons. These results suggest that a balance between the length of the uninterrupted polypyrimidine tract and the length of the exon is an important determinant of the relative strength of the splice sites, ensuring correct splicing patterns of multiintron pre-mRNAs.


2010 ◽  
Vol 30 (8) ◽  
pp. 1878-1886 ◽  
Author(s):  
Martin J. Hicks ◽  
William F. Mueller ◽  
Peter J. Shepard ◽  
Klemens J. Hertel

ABSTRACT Alternative 5′ splice site selection is one of the major pathways resulting in mRNA diversification. Regulation of this type of alternative splicing depends on the presence of regulatory elements that activate or repress the use of competing splice sites, usually leading to the preferential use of the proximal splice site. However, the mechanisms involved in proximal splice site selection and the thermodynamic advantage realized by proximal splice sites are not well understood. Here, we have carried out a systematic analysis of alternative 5′ splice site usage using in vitro splicing assays. We show that observed rates of splicing correlate well with their U1 snRNA base pairing potential. Weak U1 snRNA interactions with the 5′ splice site were significantly rescued by the proximity of the downstream exon, demonstrating that the intron definition mode of splice site recognition is highly efficient. In the context of competing splice sites, the proximity to the downstream 3′ splice site was more influential in dictating splice site selection than the actual 5′ splice site/U1 snRNA base pairing potential. Surprisingly, the kinetic analysis also demonstrated that an upstream competing 5′ splice site enhances the rate of proximal splicing. These results reveal the discovery of a new splicing regulatory element, an upstream 5′ splice site functioning as a splicing enhancer.


1991 ◽  
Vol 11 (12) ◽  
pp. 6075-6083 ◽  
Author(s):  
Z Dominski ◽  
R Kole

Model pre-mRNAs containing two introns and three exons, derived from the human beta-globin gene, were used to study the effects of internal exon length on splice site selection. Splicing was assayed in vitro in HeLa nuclear extracts and in vivo during transient expression in transfected HeLa cells. For substrates with internal exons 87, 104, and 171 nucleotides in length, in vitro splicing proceeded via a regular splicing pathway, in which all three exons were included in the spliced product. Primary transcripts with internal exons containing 23, 29, and 33 nucleotides were spliced by an alternative pathway, in which the first exon was joined directly to the third one. The internal exon was missing from the spliced product and together with two flanking introns was included in a large lariat structure. The same patterns of splicing were retained when transcripts containing 171-, 33-, and 29-nucleotide-long internal exons were spliced in vivo. A transcript containing a 51-nucleotide-long exon was spliced in vitro via both pathways but in vivo generated only a correctly spliced product. Skipping of short internal exons was reversed both in vitro and in vivo when purines in the upstream polypyrimidine tract were replaced by pyrimidines. The changes in the polypyrimidine tract achieved by these substitutions led in vitro to complete (transcripts containing 28 pyrimidines in a row) or partial (transcripts containing 15 pyrimidines in a row) restoration of a regular splicing pathway. Splicing in vivo of these transcripts led exclusively to the spliced product containing all three exons. These results suggest that a balance between the length of the uninterrupted polypyrimidine tract and the length of the exon is an important determinant of the relative strength of the splice sites, ensuring correct splicing patterns of multiintron pre-mRNAs.


Sign in / Sign up

Export Citation Format

Share Document